From Wikipedia, the free encyclopedia
«Invalid proof» redirects here. For any type of invalid proof besides mathematics, see Fallacy.
«0 = 1» redirects here. For the algebraic structure where this equality holds, see Null ring.
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy. There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or deception in the presentation of the proof.
For example, the reason why validity fails may be attributed to a division by zero that is hidden by algebraic notation. There is a certain quality of the mathematical fallacy: as typically presented, it leads not only to an absurd result, but does so in a crafty or clever way.[1] Therefore, these fallacies, for pedagogic reasons, usually take the form of spurious proofs of obvious contradictions. Although the proofs are flawed, the errors, usually by design, are comparatively subtle, or designed to show that certain steps are conditional, and are not applicable in the cases that are the exceptions to the rules.
The traditional way of presenting a mathematical fallacy is to give an invalid step of deduction mixed in with valid steps, so that the meaning of fallacy is here slightly different from the logical fallacy. The latter usually applies to a form of argument that does not comply with the valid inference rules of logic, whereas the problematic mathematical step is typically a correct rule applied with a tacit wrong assumption. Beyond pedagogy, the resolution of a fallacy can lead to deeper insights into a subject (e.g., the introduction of Pasch’s axiom of Euclidean geometry,[2] the five colour theorem of graph theory). Pseudaria, an ancient lost book of false proofs, is attributed to Euclid.[3]
Mathematical fallacies exist in many branches of mathematics. In elementary algebra, typical examples may involve a step where division by zero is performed, where a root is incorrectly extracted or, more generally, where different values of a multiple valued function are equated. Well-known fallacies also exist in elementary Euclidean geometry and calculus.[4][5]
Howlers[edit]
Anomalous cancellation in calculus
Examples exist of mathematically correct results derived by incorrect lines of reasoning. Such an argument, however true the conclusion appears to be, is mathematically invalid and is commonly known as a howler. The following is an example of a howler involving anomalous cancellation:
Here, although the conclusion 16/64 = 1/4 is correct, there is a fallacious, invalid cancellation in the middle step.[note 1] Another classical example of a howler is proving the Cayley–Hamilton theorem by simply substituting the scalar variables of the characteristic polynomial by the matrix.
Bogus proofs, calculations, or derivations constructed to produce a correct result in spite of incorrect logic or operations were termed «howlers» by Maxwell.[2] Outside the field of mathematics the term howler has various meanings, generally less specific.
Division by zero[edit]
The division-by-zero fallacy has many variants. The following example uses a disguised division by zero to «prove» that 2 = 1, but can be modified to prove that any number equals any other number.
- Let a and b be equal, nonzero quantities
- Multiply by a
- Subtract b2
- Factor both sides: the left factors as a difference of squares, the right is factored by extracting b from both terms
- Divide out (a − b)
- Use the fact that a = b
- Combine like terms on the left
- Divide by the non-zero b
- Q.E.D.[6]
The fallacy is in line 5: the progression from line 4 to line 5 involves division by a − b, which is zero since a = b. Since division by zero is undefined, the argument is invalid.
Analysis[edit]
Mathematical analysis as the mathematical study of change and limits can lead to mathematical fallacies — if the properties of integrals and differentials are ignored. For instance, a naive use of integration by parts can be used to give a false proof that 0 = 1.[7] Letting u = 1/log x and dv = dx/x, we may write:
after which the antiderivatives may be cancelled yielding 0 = 1. The problem is that antiderivatives are only defined up to a constant and shifting them by 1 or indeed any number is allowed. The error really comes to light when we introduce arbitrary integration limits a and b.
Since the difference between two values of a constant function vanishes, the same definite integral appears on both sides of the equation.
Multivalued functions[edit]
Many functions do not have a unique inverse. For instance, while squaring a number gives a unique value, there are two possible square roots of a positive number. The square root is multivalued. One value can be chosen by convention as the principal value; in the case of the square root the non-negative value is the principal value, but there is no guarantee that the square root given as the principal value of the square of a number will be equal to the original number (e.g. the principal square root of the square of −2 is 2). This remains true for nth roots.
Positive and negative roots[edit]
Care must be taken when taking the square root of both sides of an equality. Failing to do so results in a «proof» of[8] 5 = 4.
Proof:
- Start from
- Write this as
- Rewrite as
- Add 81/4 on both sides:
- These are perfect squares:
- Take the square root of both sides:
- Add 9/2 on both sides:
- Q.E.D.
The fallacy is in the second to last line, where the square root of both sides is taken: a2 = b2 only implies a = b if a and b have the same sign, which is not the case here. In this case, it implies that a = –b, so the equation should read
which, by adding 9/2 on both sides, correctly reduces to 5 = 5.
Another example illustrating the danger of taking the square root of both sides of an equation involves the following fundamental identity[9]
which holds as a consequence of the Pythagorean theorem. Then, by taking a square root,
Evaluating this when x = π , we get that
or
which is incorrect.
The error in each of these examples fundamentally lies in the fact that any equation of the form
where , has two solutions:
and it is essential to check which of these solutions is relevant to the problem at hand.[10] In the above fallacy, the square root that allowed the second equation to be deduced from the first is valid only when cos x is positive. In particular, when x is set to π, the second equation is rendered invalid.
Square roots of negative numbers[edit]
Invalid proofs utilizing powers and roots are often of the following kind:
The fallacy is that the rule is generally valid only if at least one of
and
is non-negative (when dealing with real numbers), which is not the case here.[11]
Alternatively, imaginary roots are obfuscated in the following:
The error here lies in the third equality, as the rule only holds for positive real a and real b, c.
Complex exponents[edit]
When a number is raised to a complex power, the result is not uniquely defined (see Exponentiation § Failure of power and logarithm identities). If this property is not recognized, then errors such as the following can result:
The error here is that the rule of multiplying exponents as when going to the third line does not apply unmodified with complex exponents, even if when putting both sides to the power i only the principal value is chosen. When treated as multivalued functions, both sides produce the same set of values, being {e2πn | n ∈ ℤ}.
Geometry[edit]
Many mathematical fallacies in geometry arise from using an additive equality involving oriented quantities (such as adding vectors along a given line or adding oriented angles in the plane) to a valid identity, but which fixes only the absolute value of (one of) these quantities. This quantity is then incorporated into the equation with the wrong orientation, so as to produce an absurd conclusion. This wrong orientation is usually suggested implicitly by supplying an imprecise diagram of the situation, where relative positions of points or lines are chosen in a way that is actually impossible under the hypotheses of the argument, but non-obviously so.
In general, such a fallacy is easy to expose by drawing a precise picture of the situation, in which some relative positions will be different from those in the provided diagram. In order to avoid such fallacies, a correct geometric argument using addition or subtraction of distances or angles should always prove that quantities are being incorporated with their correct orientation.
Fallacy of the isosceles triangle[edit]
The fallacy of the isosceles triangle, from (Maxwell 1959, Chapter II, § 1), purports to show that every triangle is isosceles, meaning that two sides of the triangle are congruent. This fallacy was known to Lewis Carroll and may have been discovered by him. It was published in 1899.[12][13]
Given a triangle △ABC, prove that AB = AC:
- Draw a line bisecting ∠A.
- Draw the perpendicular bisector of segment BC, which bisects BC at a point D.
- Let these two lines meet at a point O.
- Draw line OR perpendicular to AB, line OQ perpendicular to AC.
- Draw lines OB and OC.
- By AAS, △RAO ≅ △QAO (∠ORA = ∠OQA = 90°; ∠RAO = ∠QAO; AO = AO (common side)).
- By RHS,[note 2] △ROB ≅ △QOC (∠BRO = ∠CQO = 90°; BO = OC (hypotenuse); RO = OQ (leg)).
- Thus, AR = AQ, RB = QC, and AB = AR + RB = AQ + QC = AC.
Q.E.D.
As a corollary, one can show that all triangles are equilateral, by showing that AB = BC and AC = BC in the same way.
The error in the proof is the assumption in the diagram that the point O is inside the triangle. In fact, O always lies on the circumcircle of the △ABC (except for isosceles and equilateral triangles where AO and OD coincide). Furthermore, it can be shown that, if AB is longer than AC, then R will lie within AB, while Q will lie outside of AC, and vice versa (in fact, any diagram drawn with sufficiently accurate instruments will verify the above two facts). Because of this, AB is still AR + RB, but AC is actually AQ − QC; and thus the lengths are not necessarily the same.
Proof by induction[edit]
There exist several fallacious proofs by induction in which one of the components, basis case or inductive step, is incorrect. Intuitively, proofs by induction work by arguing that if a statement is true in one case, it is true in the next case, and hence by repeatedly applying this, it can be shown to be true for all cases. The following «proof» shows that all horses are the same colour.[14][note 3]
- Let us say that any group of N horses is all of the same colour.
- If we remove a horse from the group, we have a group of N − 1 horses of the same colour. If we add another horse, we have another group of N horses. By our previous assumption, all the horses are of the same colour in this new group, since it is a group of N horses.
- Thus we have constructed two groups of N horses all of the same colour, with N − 1 horses in common. Since these two groups have some horses in common, the two groups must be of the same colour as each other.
- Therefore, combining all the horses used, we have a group of N + 1 horses of the same colour.
- Thus if any N horses are all the same colour, any N + 1 horses are the same colour.
- This is clearly true for N = 1 (i.e. one horse is a group where all the horses are the same colour). Thus, by induction, N horses are the same colour for any positive integer N. i.e. all horses are the same colour.
The fallacy in this proof arises in line 3. For N = 1, the two groups of horses have N − 1 = 0 horses in common, and thus are not necessarily the same colour as each other, so the group of N + 1 = 2 horses is not necessarily all of the same colour. The implication «every N horses are of the same colour, then N + 1 horses are of the same colour» works for any N > 1, but fails to be true when N = 1. The basis case is correct, but the induction step has a fundamental flaw.
See also[edit]
- Anomalous cancellation – Kind of arithmetic error
- Division by zero – Class of mathematical expression
- List of incomplete proofs
- Mathematical coincidence – Coincidence in mathematics
- Paradox – Statement that apparently contradicts itself
- Proof by intimidation – Marking an argument as obvious or trivial
Notes[edit]
- ^ The same fallacy also applies to the following:
- ^ Hypotenuse–leg congruence
- ^ George Pólya’s original «proof» was that any n girls have the same colour eyes.
References[edit]
- ^ Maxwell 1959, p. 9
- ^ a b Maxwell 1959
- ^ Heath & Heiberg 1908, Chapter II, §I
- ^ Barbeau, Ed (1991). «Fallacies, Flaws, and Flimflam» (PDF). The College Mathematics Journal. 22 (5). ISSN 0746-8342.
- ^ «soft question – Best Fake Proofs? (A M.SE April Fools Day collection)». Mathematics Stack Exchange. Retrieved 2019-10-24.
- ^ Heuser, Harro (1989), Lehrbuch der Analysis – Teil 1 (6th ed.), Teubner, p. 51, ISBN 978-3-8351-0131-9
- ^ Barbeau, Ed (1990), «Fallacies, Flaws and Flimflam #19: Dolt’s Theorem», The College Mathematics Journal, 21 (3): 216–218, doi:10.1080/07468342.1990.11973308
- ^ Frohlichstein, Jack (1967). Mathematical Fun, Games and Puzzles (illustrated ed.). Courier Corporation. p. 207. ISBN 0-486-20789-7. Extract of page 207
- ^ Maxwell 1959, Chapter VI, §I.1
- ^ Maxwell 1959, Chapter VI, §II
- ^ Nahin, Paul J. (2010). An Imaginary Tale: The Story of «i«. Princeton University Press. p. 12. ISBN 978-1-4008-3029-9. Extract of page 12
- ^ S.D.Collingwood, ed. (1899), The Lewis Carroll Picture Book, Collins, pp. 190–191
- ^ Robin Wilson (2008), Lewis Carroll in Numberland, Penguin Books, pp. 169–170, ISBN 978-0-14-101610-8
- ^ Pólya, George (1954). Induction and Analogy in Mathematics. Mathematics and plausible reasoning. Vol. 1. Princeton. p. 120.
- Barbeau, Edward J. (2000), Mathematical fallacies, flaws, and flimflam, MAA Spectrum, Mathematical Association of America, ISBN 978-0-88385-529-4, MR 1725831.
- Bunch, Bryan (1997), Mathematical fallacies and paradoxes, New York: Dover Publications, ISBN 978-0-486-29664-7, MR 1461270.
- Heath, Sir Thomas Little; Heiberg, Johan Ludvig (1908), The thirteen books of Euclid’s Elements, Volume 1, The University Press.
- Maxwell, E. A. (1959), Fallacies in mathematics, Cambridge University Press, ISBN 0-521-05700-0, MR 0099907.
External links[edit]
- Invalid proofs at Cut-the-knot (including literature references)
- Classic fallacies with some discussion
- More invalid proofs from AhaJokes.com
- Math jokes including an invalid proof
From Wikipedia, the free encyclopedia
«Invalid proof» redirects here. For any type of invalid proof besides mathematics, see Fallacy.
«0 = 1» redirects here. For the algebraic structure where this equality holds, see Null ring.
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy. There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or deception in the presentation of the proof.
For example, the reason why validity fails may be attributed to a division by zero that is hidden by algebraic notation. There is a certain quality of the mathematical fallacy: as typically presented, it leads not only to an absurd result, but does so in a crafty or clever way.[1] Therefore, these fallacies, for pedagogic reasons, usually take the form of spurious proofs of obvious contradictions. Although the proofs are flawed, the errors, usually by design, are comparatively subtle, or designed to show that certain steps are conditional, and are not applicable in the cases that are the exceptions to the rules.
The traditional way of presenting a mathematical fallacy is to give an invalid step of deduction mixed in with valid steps, so that the meaning of fallacy is here slightly different from the logical fallacy. The latter usually applies to a form of argument that does not comply with the valid inference rules of logic, whereas the problematic mathematical step is typically a correct rule applied with a tacit wrong assumption. Beyond pedagogy, the resolution of a fallacy can lead to deeper insights into a subject (e.g., the introduction of Pasch’s axiom of Euclidean geometry,[2] the five colour theorem of graph theory). Pseudaria, an ancient lost book of false proofs, is attributed to Euclid.[3]
Mathematical fallacies exist in many branches of mathematics. In elementary algebra, typical examples may involve a step where division by zero is performed, where a root is incorrectly extracted or, more generally, where different values of a multiple valued function are equated. Well-known fallacies also exist in elementary Euclidean geometry and calculus.[4][5]
Howlers[edit]
Anomalous cancellation in calculus
Examples exist of mathematically correct results derived by incorrect lines of reasoning. Such an argument, however true the conclusion appears to be, is mathematically invalid and is commonly known as a howler. The following is an example of a howler involving anomalous cancellation:
Here, although the conclusion 16/64 = 1/4 is correct, there is a fallacious, invalid cancellation in the middle step.[note 1] Another classical example of a howler is proving the Cayley–Hamilton theorem by simply substituting the scalar variables of the characteristic polynomial by the matrix.
Bogus proofs, calculations, or derivations constructed to produce a correct result in spite of incorrect logic or operations were termed «howlers» by Maxwell.[2] Outside the field of mathematics the term howler has various meanings, generally less specific.
Division by zero[edit]
The division-by-zero fallacy has many variants. The following example uses a disguised division by zero to «prove» that 2 = 1, but can be modified to prove that any number equals any other number.
- Let a and b be equal, nonzero quantities
- Multiply by a
- Subtract b2
- Factor both sides: the left factors as a difference of squares, the right is factored by extracting b from both terms
- Divide out (a − b)
- Use the fact that a = b
- Combine like terms on the left
- Divide by the non-zero b
- Q.E.D.[6]
The fallacy is in line 5: the progression from line 4 to line 5 involves division by a − b, which is zero since a = b. Since division by zero is undefined, the argument is invalid.
Analysis[edit]
Mathematical analysis as the mathematical study of change and limits can lead to mathematical fallacies — if the properties of integrals and differentials are ignored. For instance, a naive use of integration by parts can be used to give a false proof that 0 = 1.[7] Letting u = 1/log x and dv = dx/x, we may write:
after which the antiderivatives may be cancelled yielding 0 = 1. The problem is that antiderivatives are only defined up to a constant and shifting them by 1 or indeed any number is allowed. The error really comes to light when we introduce arbitrary integration limits a and b.
Since the difference between two values of a constant function vanishes, the same definite integral appears on both sides of the equation.
Multivalued functions[edit]
Many functions do not have a unique inverse. For instance, while squaring a number gives a unique value, there are two possible square roots of a positive number. The square root is multivalued. One value can be chosen by convention as the principal value; in the case of the square root the non-negative value is the principal value, but there is no guarantee that the square root given as the principal value of the square of a number will be equal to the original number (e.g. the principal square root of the square of −2 is 2). This remains true for nth roots.
Positive and negative roots[edit]
Care must be taken when taking the square root of both sides of an equality. Failing to do so results in a «proof» of[8] 5 = 4.
Proof:
- Start from
- Write this as
- Rewrite as
- Add 81/4 on both sides:
- These are perfect squares:
- Take the square root of both sides:
- Add 9/2 on both sides:
- Q.E.D.
The fallacy is in the second to last line, where the square root of both sides is taken: a2 = b2 only implies a = b if a and b have the same sign, which is not the case here. In this case, it implies that a = –b, so the equation should read
which, by adding 9/2 on both sides, correctly reduces to 5 = 5.
Another example illustrating the danger of taking the square root of both sides of an equation involves the following fundamental identity[9]
which holds as a consequence of the Pythagorean theorem. Then, by taking a square root,
Evaluating this when x = π , we get that
or
which is incorrect.
The error in each of these examples fundamentally lies in the fact that any equation of the form
where , has two solutions:
and it is essential to check which of these solutions is relevant to the problem at hand.[10] In the above fallacy, the square root that allowed the second equation to be deduced from the first is valid only when cos x is positive. In particular, when x is set to π, the second equation is rendered invalid.
Square roots of negative numbers[edit]
Invalid proofs utilizing powers and roots are often of the following kind:
The fallacy is that the rule is generally valid only if at least one of
and
is non-negative (when dealing with real numbers), which is not the case here.[11]
Alternatively, imaginary roots are obfuscated in the following:
The error here lies in the third equality, as the rule only holds for positive real a and real b, c.
Complex exponents[edit]
When a number is raised to a complex power, the result is not uniquely defined (see Exponentiation § Failure of power and logarithm identities). If this property is not recognized, then errors such as the following can result:
The error here is that the rule of multiplying exponents as when going to the third line does not apply unmodified with complex exponents, even if when putting both sides to the power i only the principal value is chosen. When treated as multivalued functions, both sides produce the same set of values, being {e2πn | n ∈ ℤ}.
Geometry[edit]
Many mathematical fallacies in geometry arise from using an additive equality involving oriented quantities (such as adding vectors along a given line or adding oriented angles in the plane) to a valid identity, but which fixes only the absolute value of (one of) these quantities. This quantity is then incorporated into the equation with the wrong orientation, so as to produce an absurd conclusion. This wrong orientation is usually suggested implicitly by supplying an imprecise diagram of the situation, where relative positions of points or lines are chosen in a way that is actually impossible under the hypotheses of the argument, but non-obviously so.
In general, such a fallacy is easy to expose by drawing a precise picture of the situation, in which some relative positions will be different from those in the provided diagram. In order to avoid such fallacies, a correct geometric argument using addition or subtraction of distances or angles should always prove that quantities are being incorporated with their correct orientation.
Fallacy of the isosceles triangle[edit]
The fallacy of the isosceles triangle, from (Maxwell 1959, Chapter II, § 1), purports to show that every triangle is isosceles, meaning that two sides of the triangle are congruent. This fallacy was known to Lewis Carroll and may have been discovered by him. It was published in 1899.[12][13]
Given a triangle △ABC, prove that AB = AC:
- Draw a line bisecting ∠A.
- Draw the perpendicular bisector of segment BC, which bisects BC at a point D.
- Let these two lines meet at a point O.
- Draw line OR perpendicular to AB, line OQ perpendicular to AC.
- Draw lines OB and OC.
- By AAS, △RAO ≅ △QAO (∠ORA = ∠OQA = 90°; ∠RAO = ∠QAO; AO = AO (common side)).
- By RHS,[note 2] △ROB ≅ △QOC (∠BRO = ∠CQO = 90°; BO = OC (hypotenuse); RO = OQ (leg)).
- Thus, AR = AQ, RB = QC, and AB = AR + RB = AQ + QC = AC.
Q.E.D.
As a corollary, one can show that all triangles are equilateral, by showing that AB = BC and AC = BC in the same way.
The error in the proof is the assumption in the diagram that the point O is inside the triangle. In fact, O always lies on the circumcircle of the △ABC (except for isosceles and equilateral triangles where AO and OD coincide). Furthermore, it can be shown that, if AB is longer than AC, then R will lie within AB, while Q will lie outside of AC, and vice versa (in fact, any diagram drawn with sufficiently accurate instruments will verify the above two facts). Because of this, AB is still AR + RB, but AC is actually AQ − QC; and thus the lengths are not necessarily the same.
Proof by induction[edit]
There exist several fallacious proofs by induction in which one of the components, basis case or inductive step, is incorrect. Intuitively, proofs by induction work by arguing that if a statement is true in one case, it is true in the next case, and hence by repeatedly applying this, it can be shown to be true for all cases. The following «proof» shows that all horses are the same colour.[14][note 3]
- Let us say that any group of N horses is all of the same colour.
- If we remove a horse from the group, we have a group of N − 1 horses of the same colour. If we add another horse, we have another group of N horses. By our previous assumption, all the horses are of the same colour in this new group, since it is a group of N horses.
- Thus we have constructed two groups of N horses all of the same colour, with N − 1 horses in common. Since these two groups have some horses in common, the two groups must be of the same colour as each other.
- Therefore, combining all the horses used, we have a group of N + 1 horses of the same colour.
- Thus if any N horses are all the same colour, any N + 1 horses are the same colour.
- This is clearly true for N = 1 (i.e. one horse is a group where all the horses are the same colour). Thus, by induction, N horses are the same colour for any positive integer N. i.e. all horses are the same colour.
The fallacy in this proof arises in line 3. For N = 1, the two groups of horses have N − 1 = 0 horses in common, and thus are not necessarily the same colour as each other, so the group of N + 1 = 2 horses is not necessarily all of the same colour. The implication «every N horses are of the same colour, then N + 1 horses are of the same colour» works for any N > 1, but fails to be true when N = 1. The basis case is correct, but the induction step has a fundamental flaw.
See also[edit]
- Anomalous cancellation – Kind of arithmetic error
- Division by zero – Class of mathematical expression
- List of incomplete proofs
- Mathematical coincidence – Coincidence in mathematics
- Paradox – Statement that apparently contradicts itself
- Proof by intimidation – Marking an argument as obvious or trivial
Notes[edit]
- ^ The same fallacy also applies to the following:
- ^ Hypotenuse–leg congruence
- ^ George Pólya’s original «proof» was that any n girls have the same colour eyes.
References[edit]
- ^ Maxwell 1959, p. 9
- ^ a b Maxwell 1959
- ^ Heath & Heiberg 1908, Chapter II, §I
- ^ Barbeau, Ed (1991). «Fallacies, Flaws, and Flimflam» (PDF). The College Mathematics Journal. 22 (5). ISSN 0746-8342.
- ^ «soft question – Best Fake Proofs? (A M.SE April Fools Day collection)». Mathematics Stack Exchange. Retrieved 2019-10-24.
- ^ Heuser, Harro (1989), Lehrbuch der Analysis – Teil 1 (6th ed.), Teubner, p. 51, ISBN 978-3-8351-0131-9
- ^ Barbeau, Ed (1990), «Fallacies, Flaws and Flimflam #19: Dolt’s Theorem», The College Mathematics Journal, 21 (3): 216–218, doi:10.1080/07468342.1990.11973308
- ^ Frohlichstein, Jack (1967). Mathematical Fun, Games and Puzzles (illustrated ed.). Courier Corporation. p. 207. ISBN 0-486-20789-7. Extract of page 207
- ^ Maxwell 1959, Chapter VI, §I.1
- ^ Maxwell 1959, Chapter VI, §II
- ^ Nahin, Paul J. (2010). An Imaginary Tale: The Story of «i«. Princeton University Press. p. 12. ISBN 978-1-4008-3029-9. Extract of page 12
- ^ S.D.Collingwood, ed. (1899), The Lewis Carroll Picture Book, Collins, pp. 190–191
- ^ Robin Wilson (2008), Lewis Carroll in Numberland, Penguin Books, pp. 169–170, ISBN 978-0-14-101610-8
- ^ Pólya, George (1954). Induction and Analogy in Mathematics. Mathematics and plausible reasoning. Vol. 1. Princeton. p. 120.
- Barbeau, Edward J. (2000), Mathematical fallacies, flaws, and flimflam, MAA Spectrum, Mathematical Association of America, ISBN 978-0-88385-529-4, MR 1725831.
- Bunch, Bryan (1997), Mathematical fallacies and paradoxes, New York: Dover Publications, ISBN 978-0-486-29664-7, MR 1461270.
- Heath, Sir Thomas Little; Heiberg, Johan Ludvig (1908), The thirteen books of Euclid’s Elements, Volume 1, The University Press.
- Maxwell, E. A. (1959), Fallacies in mathematics, Cambridge University Press, ISBN 0-521-05700-0, MR 0099907.
External links[edit]
- Invalid proofs at Cut-the-knot (including literature references)
- Classic fallacies with some discussion
- More invalid proofs from AhaJokes.com
- Math jokes including an invalid proof
«Недействительное доказательство» перенаправляется сюда. По поводу любого типа недействительных доказательств, кроме математических, см. Заблуждение.
В математика, некоторые виды ошибочных доказательств часто выставляются, а иногда и собираются в качестве иллюстраций концепции, называемой математическая ошибка. Есть различие между простым ошибка и математическая ошибка в доказательстве, когда ошибка в доказательстве приводит к недействительному доказательству, в то время как в наиболее известных примерах математических ошибок присутствует некоторый элемент утаивания или обмана в представлении доказательства.[1]
Например, причину, по которой не действует достоверность, можно отнести к деление на ноль что скрыто алгебраической записью. Есть определенное качество математической ошибки: в том виде, в котором ее обычно представляют, она приводит не только к абсурдному результату, но и делает это хитрым или хитрым способом.[2] Поэтому эти заблуждения по педагогическим причинам обычно принимают форму ложных доказательства очевидного противоречия. Хотя доказательства ошибочны, ошибки, как правило, преднамеренные, являются сравнительно малозаметными или предназначены для демонстрации того, что определенные шаги являются условными и неприменимы в случаях, которые являются исключениями из правил.
Традиционный способ представления математической ошибки состоит в том, чтобы дать неверный шаг вывода, смешанный с действительными шагами, так что значение заблуждение здесь немного отличается от логическая ошибка. Последнее обычно применяется к форме аргументации, которая не соответствует действующим правилам логического вывода, тогда как проблемный математический шаг обычно является правильным правилом, применяемым с неявным неправильным предположением. Помимо педагогики, разрешение ошибки может привести к более глубокому пониманию предмета (например, введение Аксиома Паша из Евклидова геометрия[3], то теорема пяти цветов из теория графов ). Псевдария, древняя утерянная книга ложных доказательств, приписывается Евклид.[4]
Математические ошибки существуют во многих областях математики. В элементарная алгебра, типичные примеры могут включать этап, на котором деление на ноль выполняется, где корень неправильно извлекается или, в более общем смысле, где разные значения многозначная функция приравниваются. Известные заблуждения существуют также в элементарной евклидовой геометрии и исчисление.[5][6]
Ревуны
Аномальный
отмена
в исчислении
Существуют примеры математически правильных результатов, полученных в результате неправильных рассуждений. Такой аргумент, каким бы верным он ни казался, математически неверен. инвалид и широко известен как ревун.[1] Ниже приводится пример ревуна, включающего аномальная отмена:
Здесь хотя вывод 16/64 = 1/4 правильно, на среднем этапе происходит ошибочная, недействительная отмена.[примечание 1] Другой классический пример ревуна — доказательство теоремы Кэли – Гамильтона простой заменой скалярных переменных характеристического полинома матрицей.
Поддельные доказательства, вычисления или выводы, построенные для получения правильного результата, несмотря на неправильную логику или операции, Максвелл назвал «воплями».[7] За пределами области математики термин ревун имеет различные значения, как правило, менее конкретные.
Деление на ноль
В ошибка деления на ноль есть много вариантов. В следующем примере используется замаскированное деление на ноль, чтобы «доказать», что 2 = 1, но его можно изменить, чтобы доказать, что любое число равно любому другому числу.
- Позволять а и б равны, ненулевые величины
- Умножить на а
- Вычесть б2
- Фактор обе стороны: левые факторы как разница квадратов, право факторизуется путем извлечения б с обоих условий
- Разделить (а − б)
- Наблюдая за этим а = б
- Объедините похожие термины слева
- Разделить на ненулевое б
- Q.E.D.[8]
Ошибка в строке 5: переход от строки 4 к строке 5 включает деление на а − б, который равен нулю, поскольку а = б. С деление на ноль не определено, аргумент недопустим.
Анализ
Математический анализ как математическое исследование изменений и пределы может привести к математическим ошибкам — если свойства интегралы и дифференциалы игнорируются. Например, наивное использование интеграция по частям может использоваться для ложного доказательства того, что 0 = 1.[9] Сдача ты = 1/бревно Икс и dv = dx/Икс, мы можем написать:
после чего первообразные могут быть отменены, давая 0 = 1. Проблема в том, что первообразные определены только вплоть до а постоянный и смещение их на 1 или любое другое число разрешено. Ошибка действительно обнаруживается, когда мы вводим произвольные пределы интегрирования а и б.
Поскольку разница между двумя значениями постоянной функции равна нулю, по обе стороны уравнения появляется один и тот же определенный интеграл.
Многозначные функции
Многие функции не имеют уникального обратный. Например, возведение числа в квадрат дает уникальное значение, но есть два возможных квадратные корни положительного числа. Квадратный корень многозначный. По соглашению можно выбрать одно значение в качестве основная стоимость; в случае квадратного корня неотрицательное значение является главным значением, но нет гарантии, что квадратный корень, заданный как главное значение квадрата числа, будет равен исходному числу (например, главный квадратный корень квадрата −2 равно 2). Это остается верным для энные корни.
Положительные и отрицательные корни
Следует соблюдать осторожность при приеме квадратный корень обеих сторон равенство. Невыполнение этого требования приводит к «доказательству»[10] 5 = 4.
Доказательство:
- Начать с
- Напишите это как
- Перепишите как
- Добавлять 81/4 с обеих сторон:
- Это идеальные квадраты:
- Извлеките квадратный корень из обеих частей:
- Добавлять 9/2 с обеих сторон:
- Q.E.D.
Ошибка заключается в предпоследней строке, где извлекается квадратный корень из обеих частей: а2 = б2 только подразумевает а = б если а и б имеют такой же знак, чего здесь нет. В этом случае это означает, что а = –б, поэтому уравнение должно выглядеть так:
который, добавив 9/2 с обеих сторон правильно уменьшается до 5 = 5.
Другой пример, иллюстрирующий опасность извлечения квадратного корня из обеих частей уравнения, включает следующее фундаментальное тождество[11]
которое выполняется как следствие теорема Пифагора. Затем, извлекая квадратный корень,
так что
Но оценивая это, когда Икс = π мы получаем это
или же
что неверно.
Ошибка в каждом из этих примеров в основном заключается в том, что любое уравнение вида
куда , имеет два решения:
и важно проверить, какое из этих решений имеет отношение к рассматриваемой проблеме.[12] В указанном выше заблуждении квадратный корень, который позволил вывести второе уравнение из первого, действителен только тогда, когда cosИкс положительный. В частности, когда Икс установлен на π, второе уравнение становится недействительным.
Квадратные корни отрицательных чисел
Недействительные доказательства, использующие силы и корни, часто бывают следующего вида:
Ошибка в том, что правило обычно действует, только если оба
и
неотрицательны (при работе с действительными числами), что здесь не так.[13]
В качестве альтернативы мнимые корни запутываются в следующем:
Ошибка здесь заключается в последнем равенстве, где мы игнорируем другие корни четвертой степени из 1,[заметка 2] которые равны −1, я и —я (куда я это мнимая единица ). Поскольку мы возводили нашу фигуру в квадрат, а затем пустили корни, мы не всегда можем предположить, что все корни будут правильными. Итак, правильные корни четвертой степени я и —я, которые представляют собой мнимые числа, которые возводятся в квадрат до -1.
Комплексные показатели
Когда число возводится в комплексную степень, результат не определяется однозначно (см. Несостоятельность тождеств силы и логарифма ). Если это свойство не распознается, могут возникнуть следующие ошибки:
Ошибка здесь в том, что правило умножения показателей степени, как при переходе к третьей строке, не применяется без изменений со сложными показателями, даже если при установке обеих сторон в степень я выбирается только главное значение. Когда рассматривается как многозначные функции, обе стороны производят одинаковый набор значений, будучи {е2πп | п ∈ ℤ}.
Геометрия
Многие математические ошибки в геометрия возникают из-за использования аддитивного равенства, включающего ориентированные величины (например, добавление векторов вдоль заданной линии или добавление ориентированных углов в плоскости) к действительной идентичности, но которое фиксирует только абсолютное значение (одной из) этих величин. Затем эта величина включается в уравнение с неправильной ориентацией, чтобы сделать абсурдный вывод. Эта неправильная ориентация обычно подразумевается путем предоставления неточной схемы ситуации, в которой относительное положение точек или линий выбирается таким образом, который фактически невозможен в соответствии с гипотезами аргумента, но неочевидно.
В общем, такое заблуждение легко выявить, нарисовав точную картину ситуации, в которой некоторые относительные положения будут отличаться от тех, что указаны на представленной диаграмме. Чтобы избежать таких заблуждений, правильный геометрический аргумент с использованием сложения или вычитания расстояний или углов должен всегда доказывать, что величины включаются с их правильной ориентацией.
Ошибка равнобедренного треугольника
Ошибочность равнобедренного треугольника из (Максвелл 1959, Глава II, § 1), имеет целью показать, что каждый треугольник является равнобедренный, что означает, что две стороны треугольника равны конгруэнтный. Это заблуждение было приписано Льюис Кэрролл.[14]
Для треугольника △ ABC докажите, что AB = AC:
- Нарисуйте линию деление пополам ∠А.
- Нарисуйте серединный перпендикуляр к отрезку BC, который делит BC пополам в точке D.
- Пусть эти две прямые пересекаются в точке O.
- Проведите линию OR перпендикулярно AB, линию OQ перпендикулярно AC.
- Нарисуйте линии OB и OC.
- К ААС, △ RAO ≅ △ QAO (∠ORA = ∠OQA = 90 °; ∠RAO = ∠QAO; AO = AO (общая сторона)).
- К RHS,[заметка 3] △ ROB ≅ △ QOC (∠BRO = ∠CQO = 90 °; BO = OC (гипотенуза); RO = OQ (нога)).
- Таким образом, AR = AQ, RB = QC и AB = AR + RB = AQ + QC = AC.
Q.E.D.
Как следствие, можно показать, что все треугольники равносторонние, показав, что AB = BC и AC = BC таким же образом.
Ошибка доказательства состоит в предположении на диаграмме, что точка O внутри треугольник. Фактически, O всегда лежит в описанной окружности треугольника ABC (за исключением равнобедренных и равносторонних треугольников, в которых AO и OD совпадают). Кроме того, можно показать, что если AB длиннее, чем AC, то R будет лежать в AB, а Q будет лежать за пределами переменного тока, и наоборот (фактически, любая диаграмма, нарисованная с помощью достаточно точных инструментов, подтвердит два вышеуказанных факта). Из-за этого AB по-прежнему AR + RB, но AC на самом деле AQ — QC; и, следовательно, длины не обязательно одинаковы.
Доказательство по индукции.
Существует несколько ошибочных доказательства по индукции в котором один из компонентов, базисный случай или индуктивный шаг, неверен. Интуитивно, индукционные доказательства работают, утверждая, что если утверждение истинно в одном случае, оно истинно в следующем, и, следовательно, многократно применяя это утверждение, можно показать, что оно истинно для всех случаев. Следующее «доказательство» показывает, что все лошади одного цвета.[15][примечание 4]
- Скажем, что любая группа N лошади все одного цвета.
- Если мы удалим лошадь из группы, у нас будет группа N — 1 лошадь такого же цвета. Если мы добавим еще одну лошадь, у нас будет еще одна группа N лошади. По нашему предыдущему предположению, все лошади в этой новой группе одного цвета, поскольку это группа N лошади.
- Таким образом, мы построили две группы N лошади все одного цвета, с N — 1 общая лошадь. Поскольку у этих двух групп есть несколько общих лошадей, они должны быть одного цвета.
- Следовательно, объединив всех используемых лошадей, мы получим группу N + 1 лошадь одного цвета.
- Таким образом, если N лошади все одного цвета, любые N + 1 лошади одного цвета.
- Это явно верно для N = 1 (т.е. одна лошадь — это группа, в которой все лошади одного цвета). Таким образом, по индукции N лошади одного цвета для любого положительного целого числа N. т.е. все лошади одного цвета.
Ошибка в этом доказательстве возникает в строке 3. Ибо N = 1, две группы лошадей имеют N — 1 = 0 общих лошадей и, следовательно, не обязательно одного цвета, поэтому группа N + 1 = 2 лошади не обязательно одного цвета. Значение «каждый N лошади одного цвета, то N + 1 лошадь одного цвета «работает на любые N > 1, но это не так, когда N = 1. Базовый случай правильный, но индукционный шаг имеет фундаментальный недостаток. Если бы нам дополнительно дали тот факт, что любые две лошади одного цвета, то мы могли бы правильно произвести индукцию из базового случая N = 2.
Смотрите также
- Аномальная отмена — арифметическая ошибка
- Деление на ноль — Результат, полученный как действительное число при делении на ноль
- Список неполных доказательств — Статья со списком Википедии
- Математическое совпадение — совпадение по математике
- Парадокс — Заявление, которое явно противоречит самому себе
- Доказательство запугиванием — Метод убедить кого-то, используя жаргон или заявляя, что он понятен
Примечания
Рекомендации
- ^ а б «Окончательный глоссарий высшего математического жаргона — математическая ошибка». Математическое хранилище. 2019-08-01. Получено 2019-10-24.
- ^ Максвелл 1959, п. 9
- ^ Максвелл 1959
- ^ Хит и Хелберг 1908, Глава II, §I
- ^ Барбо, Эд (1991). «Заблуждения, недостатки и вздор» (PDF). Математический журнал колледжа. 22 (5). ISSN 0746-8342.
- ^ «Мягкий вопрос — Лучшие фальшивые доказательства? (Коллекция, посвященная Дню дураков от M.SE)». Обмен стеками математики. Получено 2019-10-24.
- ^ Максвелл 1959
- ^ Хойзер, Харро (1989), Lehrbuch der Analysis — часть 1 (6-е изд.), Teubner, p. 51, ISBN 978-3-8351-0131-9
- ^ Барбо, Эд (1990), «Заблуждения, недостатки и вздор № 19: Теорема Долта», Математический журнал колледжа, 21 (3): 216–218
- ^ Frohlichstein, Джек (1967). Математические развлечения, игры и головоломки (иллюстрированный ред.). Курьерская корпорация. п. 207. ISBN 0-486-20789-7. Отрывок страницы 207
- ^ Максвелл 1959, Глава VI, §I.1
- ^ Максвелл 1959, Глава VI, §II
- ^ Нахин, Пол Дж. (2010). Воображаемая сказка: История «я«. Издательство Принстонского университета. п. 12. ISBN 978-1-4008-3029-9. Выдержка страницы 12
- ^ Робин Уилсон (2008), Льюис Кэрролл в Numberland, Penguin Books, стр. 169–170, ISBN 978-0-14-101610-8
- ^ Полиа, Джордж (1954). Индукция и аналогия в математике. Математика и правдоподобные рассуждения. 1. Принстон. п. 120.
- Барбо, Эдвард Дж. (2000), Математические заблуждения, недостатки и вздор, МАА Спектр, Математическая ассоциация Америки, ISBN 978-0-88385-529-4, МИСТЕР 1725831.
- Связка, Брайан (1997), Математические заблуждения и парадоксы, Нью-Йорк: Dover Publications, ISBN 978-0-486-29664-7, МИСТЕР 1461270.
- Хит, сэр Томас Литтл; Хейберг, Йохан Людвиг (1908), Тринадцать книг Евклида Элементов, Том 1, Университетское издательство.
- Максвелл, Э. (1959), Заблуждения в математике, Издательство Кембриджского университета, ISBN 0-521-05700-0, МИСТЕР 0099907.
внешняя ссылка
- Недействительные доказательства в Разрезать узел (включая литературные ссылки)
- Классические заблуждения с некоторым обсуждением
- Больше недействительных доказательств с AhaJokes.com
- Математические анекдоты с недействительным доказательством
Ошибки учащихся при изучении математики,
их предупреждение и объяснение
Автор работы:
Дука Наталья Ивановна
учитель математики МОУ «СОШ №4 г. Ртищево Саратовской обл.» ____________________________
Аннотация
В данной работе рассматриваются типичные ошибки, которые допускают учащиеся при выполнении математических заданий. Здесь разобраны причины, способы исправления и предупреждения ошибок, разобраны конкретные ошибки из курса алгебры и начал анализа и способы их объяснения и устранения, указаны ошибки в работах государственной итоговой аттестации учащихся 9 и 11 классов. Рассмотрены ошибки по математике в учебниках и методической литературе. Материал, представленный в работе, может заинтересовать учителей математики.
Тезисы
В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная.
Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.
Объект исследования: процесс обучения математике в основной общеобразовательной школе.
Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.
Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления.
Необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления.
Пример неосознанного применения алгоритма: получив уравнение sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x.
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок.
Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin) =
. Это очень грубая ошибка. Аналогичное задание «вычислить arctg(tg130о)» вызывает у учащихся неверный ответ 130о.
Иногда ученики используют неверную формулу, не задумываясь над ней.
Например, определяя, является ли число рациональным, ученик пишет:
=
и получает неверный ответ,
При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Должна появиться верная запись
.
При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу
an am = an+m.
Пример ошибки на свойство степени: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Необходимо в результате записать формулу
.
Встречаются ошибки от непонимания. Большинство учащихся, решая впервые неравенство х24, приводят неверное решение х
2.
Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x».
Систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении». Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся.
Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний.
В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была приведена некорректно составленная задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ВDС = ∠С». Треугольник, описанный в условии задачи, не существует.
Объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких) дается с ошибкой.
В газете «Математика» предлагается уравнение и к нему ответ:1. Приведенное решение неверное, так как приводит к потере корней.
Вступление
Вспоминается расхожая истина – умные люди учатся на чужих ошибках. В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная. Нужно лишь правильно относиться к ошибке, правильно ее использовать.
Обидно получать плохие оценки из-за ошибок «на ровном месте». Глупые ошибки – проблема многих учеников: случайная потеря знака, скобки, необоснованное изменение чисел, пропуски переменных и всевозможные ляпы. Сами ученики не могут объяснить, чем вызваны эти ошибки.
Причины ошибок, допускаемых учащимися при изучении математики
Проблема исследования состоит в теоретическом обосновании и разработке такой методики обучения математике, которая создавала бы условия для развития рефлексивной деятельности учащихся, способствующей предупреждению типичных ошибок.
Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.
Объект исследования: процесс обучения математике в основной общеобразовательной школе.
Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.
Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.
Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления. Снижает, но не исключает. Можно ли избавиться от таких ошибок? Ученик знает, что нужно решать внимательно, но ничего не может с собой поделать.
Известно, что осознание правила или определяет действия, или, по крайней мере, их контролирует. Знание правила необходимо и для того, чтобы осуществить проверку решения и дать его обоснование. Но большинство учащихся воспринимают курс алгебры как набор несвязанных между собой правил, которые заучиваются (иногда формально) для применения их к решению задач. Поэтому необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.
Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.
Выполняя математические задания, учащиеся допускают типичные ошибки:
- Незнание правил, определений, формул.
- Непонимание правил, определений, формул.
- Неумение применять правила, определения, формулы.
- Неверное применение формул.
- Невнимательное чтение условия и вопроса задания.
- Вычислительные ошибки.
- Не использование свойств фигур при решении геометрических задач.
- Логические ошибки при решении текстовых задач.
- Раскрытие скобок и применение формул сокращенного умножения.
Какие причины ошибок по математике?
- Пропуски занятий приводят к незнанию материала, пробелам в знаниях.
- Поверхностное, невдумчивое восприятие нового материала приводят к непониманию его.
- Недостаточная мозговая деятельность приводит к неумению применять правила, определения и формулы .
- Неряшливый, неаккуратный почерк ученика приводит к досадным ошибкам. Учащиеся не всегда сами понимают, что именно они написали.
- Усталость. Чрезмерная нагрузка и недостаточный сон приводит к снижению внимания, скорости мышления и, как следствие, к многочисленным ошибкам.
- Кратковременное или полное переключение внимания с одной деятельности на другую (учебную или внеучебную) приводит к утрате только что воспринятого материала, приходится все начинать сначала.
- Скорость работы. Низкая скорость выполнения мыслительных операций часто мешает ученику контролировать себя и это может стать еще одной причиной ошибки. «Зависание» с какой-нибудь одной частью задания удаляет из «оперативной памяти» информацию о другой, в которой допускается не вынужденная ошибка. Скорость работы определяется физиологией конкретного школьника и навыками выполнения тех или иных операций.
- Мотивация. Следствие низкой мотивации – потеря внимания и ошибка.
Работа над ошибками
В приемах работы над ошибками отсутствует диагностика причин ошибок. Не уделяется должного внимания работе по формированию рефлексивной деятельности учащихся и ее использованию в работе по предупреждению и исправлению математических ошибок. При отсутствии должной доли самостоятельности при работе над ошибками, совершаемые учеником действия никак не контролируются, допущенные ошибки не замечаются, причины их появления остаются невыясненными, что приводит к их повторению. Напротив, самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления. При этом у школьников постепенно развиваются стремление и умение разобраться в задаче, планировать ее решение, продумывать возможные варианты действий и прогнозировать их результаты. Например, ученик многократно применяет к преобразованию алгебраических выражений формулы квадрата суммы и разности двух чисел, но получив задание представить в виде многочлена
(–х–5)2, теряется. Следует предложить учащемуся ответить на вопрос что вызывает затруднение? И как преобразовать выражение, чтобы можно было применить одну из формул в том виде, в каком они предложены в учебнике. Другой пример неосознанного применения алгоритма: получив уравнение
sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x. Полезно предложить ученику представить наглядное решение на тригонометрическом круге.
Самоконтроль
Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей: а) умения обнаружить ошибку; б) умения её объяснить и исправить. В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:
- проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;
- проверка правильности решения задач путём составления и решения задач, обратных к данной;
- оценка результата решения задачи с точки зрения здравого смысла;
- проверка аналитического решения графическим способом.
Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата. Установление возможных пределов ожидаемого ответа предупреждает недочёты типа описок, пропуска цифр.
Например, рассмотрим задачу: “За неделю завод выпустил 130 холодильников, выполнив месячный план на 25%. Сколько холодильников должен выпустить завод за месяц по плану”.
Ученик написал = 52, ошибка становится очевидной, если перед решением ученик прикинет в уме: “За неделю завод выпустил 130 холодильников. Следовательно, за месяц он выпустит больше. Значит, ответ должен быть больше, чем 130” .
Объяснение и предупреждение ошибок
Свести ошибки к минимуму способствуют следующие профилактические меры.
- Тексты письменных заданий должны быть удобными для восприятия: грамотно сформулированными, хорошо читаемыми.
- Активная устная отработка основных ЗУН, регулярный разбор типичных ошибок.
- При объяснении нового материала предугадать ошибку и подобрать систему заданий на отработку правильного усвоения понятия. Акцентировать внимание на каждом элементе формулы, выполнение разнотипных заданий позволит свести ошибочность к минимуму.
- Подбирать задания, вызывающие интерес, формирующие устойчивое внимание.
- Прочному усвоению (а значит, отсутствию ошибок) способствуют правила, удобные для запоминания, четкие алгоритмы, следуя которым заведомо придешь к намеченной цели.
Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок. В математике, как ни в какой другой науке, особенно сильна взаимосвязь материала. Изучение и понимание последующего невозможно без знания предыдущего, отсюда неизбежность повторения на каждом уроке. При объяснении нового материала следует использовать ряд определений и теорем, которые были изучены ранее.
Например, перед изучением темы «Теоремы сложения» следует повторить следующие теоретические вопросы:
1. Четные и нечетные функции.
2. Изменение тригонометрических функций при возрастании и убывании аргумента.
3. Знаки тригонометрических функций.
4. Таблицы значений тригонометрических функций.
А также выполнить задания:
1. Определите четность и нечетность тригонометрической функции:
а) y = – cos x + x2; б) y = sin2 x; в) y = .
2. Найдите область определения функции y = x2 – 6x + 10.
3. При каких значениях x функции y = sin x и y = cos x принимают одинаковые значения?
Перед прохождением темы «Первообразная и интеграл» повторяем все формулы дифференцирования. Затем предлагается самостоятельная работа (на 10–15 мин), на которой ученики получают карточки-задания, в которых «опущены» один–два компонента из формулы дифференцирования и приведены две функции, производные которых необходимо найти. После проверки самостоятельной работы анализируем допущенные ошибки, определяем пробелы в знаниях и проводим работу по их устранению.
Рассмотрим ошибки, допускаемые в курсе алгебры и начал анализа. Задание. Найти точное значение arcsin (sin).
Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin) =
. Это очень грубая ошибка. По определению
. Следовательно, число arcsin(sin
) должно принадлежать промежутку
, число
этому промежутку не принадлежит. Имеем: arcsin (sin
) = arcsin (sin
)) = arcsin (sin
) = arcsin
=
Аналогичное задание «вычислить arctg(tg130о)» вызывает у учащихся неверный ответ 130о. Можно исправить ошибку следующим образом: учитывая, что 90о
90о для любого
и arctg (tgх) = х при
х arctg (tg130о) = arctg (tg180о
50о) = arctg (tg(
50о)) =
50о. Существует второй способ решения. Пусть arctg (tg130о) = х, получаем tg х = tg (arctg (tg130о)), откуда tg х = tg 130о. По условию равенства тангенсов имеем х = 130о +
k, где k
Z. Учитывая область определения функции у = arctg х, где х
(
90О; 90О), при k =
1 х = 130о
180о =
50о.
Рассмотрим еще один пример правильного решения аналогичного задания вычислить arcsin(sin2) при неверном ответе учащихся «2». Решение: arcsin (sink) = k, если , arcsin (sin2) = arcsin (sin(
) =
2, т. к.
2
.
Иногда ученики используют неверную формулу, не задумываясь над ней. Например, определяя, является ли число рациональным, ученик пишет:
=
и получает неверный ответ, выполняя преобразование иррационального выражения, учащийся получил
= х+2. Во-первых, учащиеся забывают, что
, во-вторых, опять ошибочная аналогия с формулой
=
, где
Применение «формулы
=
» в классе обязательно происходит независимо от того, повторяются свойства радикалов на уроках или нет. Ученик проводит аналогию с формулой
=
, где
и не понимает, почему он неправ. Если заставить ученика написать правильно по свойству, то долговременного эффекта не получится. Необходимо, чтобы ученик понял и осознал свою ошибку. Для этой цели пригоден совет: вычислите
по тому алгоритму, который только что применили, имеем
=
и по действиям
2 = 1 и определите, какое решение верное. Ученик задумывается и находит ошибку.
Можно предложить учащимся проверить себя, взяв, например, значение х = 2 но
;
при х = –2 но
.
Делаем вывод: преобразование выполнено неверно, формула «=
» не существует и
При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Нужно посоветовать ученику проверить написанное при конкретных значениях переменных. Так, при a = b = 1, c = 2, получим
, с другой стороны
, тогда 2=
В результате ученик должен сделать вывод, что при работе с «трехэтажными дробями» лучше ставить скобки, чем сравнивать длины дробных «черточек»:
. И, разумеется, должна появиться верная запись
.
При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу
an am = an+m. Полезно учащимся показать, как они могут вспомнить формулу, пользуясь определением степени, например a3a4=aaa
=a 7=a 3+4. Применяя определение степени в подобных ситуациях, учащиеся могут вывести любую формулу действий со степенями. Аналогично можно показать ошибки в действиях со степенями.
Ещё пример ошибки: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Следует привести конкретный пример с удобным вычислением
=
. Здесь же можно предложить другой способ
Необходимо в результате записать формулу .
Встречаются ошибки от непонимания. Большинство учащихся, решая впервые неравенство х24, приводят неверное решение х
2. Полезно в этом случае предложить учащимся проверить число, например. -3, при этом учащиеся убеждаются в неверности ответа. Можно показать три способа решения этого неравенства. 1 способ тот, которым и пользовались учащиеся «
», но допустили следующую ошибку «
=х». Верное решение
Этот способ решения содержит опасный момент – необходимо обратить внимание на возрастание функции у =
при х
0, иначе в дальнейшем будут еще ошибки при решении неравенств. Второй способ основан на методе интервалов х2
4, х2
,
(х-2)(х+2)0,
. Третий способ графический.
х24 при
.
Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x». В этом случае можно поступить двумя способами: подставить х =/6 и получить неверное равенство sin
2sin
,
/2 = 2
1/2 или вспомнить определение sin х на тригонометрическом круге. Наглядно хорошо видно, что sin 2х
2sinх. Обращение к тригонометрическому кругу всегда полезно повторением определения тригонометрических функций и наглядностью определений.
у
Не нужно специально исправлять каждое ошибочное утверждение ученика и предупреждать его об ошибках. Лучше поставить это утверждение на обсуждение всего класса и добиться осознанного исправления ошибки. Практика показывает, что систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении»:
Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.
Анализ работ ГИА и ЕГЭ
Анализ работ государственной итоговой аттестации учащихся 11-х классов показал, что типичные ошибки допущены при:
- преобразовании дробно-рациональных выражений, содержащих корень
n-ой степени
- исследовании функций на наибольшее и наименьшее значения;
- решении показательных и логарифмических неравенств (отсутствует ссылка на соответствующие свойства функций);
- вычислении площади криволинейной трапеции;
- построении графика функции с модулем;
- изображении тел вращения в геометрической задаче;
- теоретическом обосновании используемых формул и фактов при решении задачи по стереометрии;
- построении множества точек плоскости, удовлетворяющего заданному условию;
- решении задач с параметром.
Для повышения уровня учебных достижений учащихся на ГИА за курс старшей школы рекомендуется обратить внимание на следующие темы и разделы курса алгебры и начал анализа и геометрии:
- комбинация тел;
- углы в пространстве;
- производная и её применение к исследованию функции на отрезке;
- построение ГМТ, удовлетворяющего заданным условиям;
- логарифмические и показательные неравенства;
- тригонометрические функции и их свойства;
- тождественные преобразования дробно-рациональных выражений, содержащих корень n-ой степени.
Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний, построение и развитие межпредметных связей и осознание взаимосвязи с ранее выученными темами, на подготовку к итоговому оцениванию знаний, установлению формально-логических подходов к построению курса школьной математики, закрепление необходимости обосновывать и доказывать математические факты.
Ошибки в учебниках и методической литературе
В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была приведена задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ВDС = ∠С».
Решение.
ВD – биссектриса АВС
=
∠ВDС = ∠С ВDС равнобедренный
ВD = DС
=
Отсюда СD =
Ответ:
Решим задачу вторым способом.
ВЕ – высота АВС. Пусть DЕ = х. Из прямоугольных треугольников АВЕ и DВЕ получаем:
АВ2 – АЕ2 = ВD2 – DЕ2,
302 – (20 + х)2 = 162 – х2,
900 – 400 – 40х – х2 = 256 – х2,
40х = 244,
х = 6,1.
ВЕ высота и медиана
DЕ = СЕ
СD = 2х = 12,2. Получили несоответствие с ответом первого способа решения.
Проверим, существует ли треугольник, у которого выполнены условия: ∠ВDС = ∠С и ∠АВD = ∠DВС. Найдем величины ∠DВС, ∠ВDС, ∠С.
АD2 = АВ2 + ВD2 – 2
cos ∠AВD
cos ∠AВD =
Тогда ∠АВD 38,5о. ∠DВС = ∠АВD
38,5о.
Аналогично cos ∠ADВ =
Тогда ∠АDВ = 180о – 67,59о ∠ВDС
67,59о. Из
ВDС
∠С = 180о – 38,05о – 67,59о = 74,36о,
Отсюда следует, что ∠ВDС ∠С и треугольник DВС неравнобедренный.
Значит, задача составлена некорректно: треугольник, описанный в условии задачи, не существует.
Возможны два корректных варианта задачи:
- Дан треугольник АВС, точка D лежит на стороне ВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠ВDС = ∠С.
В этом случае ВD не является медианой. По второму способу получаем СD = 12,2.
- Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30. АD = 20, ВD = 16.
∠ВDС ∠С, в этом случае из треугольника DВС по теореме синусов получаем
В действующем учебнике задача № 536 имеет вид:
Отрезок BD является биссектрисой треугольника АВС. а) Найдите АВ, если ВС = 9 см, АD = 7,5 см, DС = 4,5 см. б) Найдите DС, если АВ = 30. АD = 20, ВD = 16.
Посмотрим объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких).
Цитируем: «Прочитай, объясни и проверь записи.
190 : 20 = 190 : 10 : 2 = 9 ( 1 остаток)
190 : 20 = 19 д. : 2 д. = 9 ( 1 остаток)
4700 : 500 = 4700 : 100 : 5 = 9 ( 2 остаток)
4700 : 500 = 47 с. : 5 с. = 9 ( 2 остаток)»
Проверяем 20 ∙ 9 + 1 = 190 – равенство неверное, делаем вывод: ошибка при выполнении деления с остатком. В чем ошибка? Анализируем 1-ое равенство 190 : 20 = 190 : 10 : 2 = 19 : 2, получаем деление числа 19 на число 2 и соответственно остаток от деления 19 на 2, но не от деления 190 на 20, действительно 19 : 2 = 9 ( 1 остаток). В этом случае 19 показывает, сколько десятков содержится в числе 190, поэтому остаток так же получаем в десятках, но не в единицах.
Анализируем 2-ое равенство 190 : 20 = 19 д. : 2 д. здесь мы делим десятки, поэтому остаток также будет в десятках 9 о чем сказано ранее), т, е. получаем 19 д. : 2 д. = 9 (1 д. остаток), проверкой убеждаемся в истинности деления 9 ∙ 2 д. + 1 д. = 19 д. = 190.
Предлагаем верные записи:
190 : 20 = 190 : 10 : 2 = 9 ( 1 д. остаток)
190 : 20 = 19 д. : 2 д. = 9 ( 1 д. остаток)
4700 : 500 = 4700 : 100 : 5 = 9 ( 2 с. остаток)
4700 : 500 = 47 с. : 5 с. = 9 ( 2 с. остаток).
В газете «Математика» предлагается уравнение и к нему ответ:1. Предложено решение уравнения по следующей схеме:
af(x)bg(x) = ap
bp
Приведенное решение неверное, так как приводит к потере корней. данное уравнение следует решать по схеме:
a f(x) b g(x) = a p
b p
a f(x)– р
b
q – g(x)
Вернемся к данном уравнению.
= 40
2 3
Заключение
Хотя проблемы формирования и развития рефлексивной деятельности в процессе обучения и поиск новых форм работы над математическими ошибками школьников и не являются абсолютно новыми, изучение такого аспекта, как использование рефлексивной деятельности учащихся при работе над типичными ошибками всегда актуальны. В данной работе рассмотрены некоторые типичные ошибки, допускаемые учащимися при изучении математики, их объяснение, меры их предупреждения. Хорошо организованная учителем работа учащихся над типичными ошибками посредством исследовательского приема приводит к улучшению результата обучению математики и развитию рядя показателей логического мышления. К тому же предмет «математика» настолько сложен, что даже методисты допускают ошибки.
Литература
- Далингер В. А. «Анализ типичных ошибок, допускаемых в курсе алгебры и начала анализа» «Математика в школе» 6-98
- 2-98 Ярский А. С, «Что делать с ошибками»
- Хэкало С. П. «Корни терять нельзя» 5-98
- Игнатенко В. З. «Сюрпризы биссектрисы» 5-98
Интернет-ресурсы
- http://mat.1september.ru/view_article.php?ID=200900304
- http://www.distedu.ru/mirror/_fiz/archive.1september.ru/mat/1998/no38.htm
- http://www.ankolpakov.ru/2011/10/03/repetitor-po-matematike-o-durackix-oshibkax/
- http://www.referun.com/n/preduprezhdenie-tipichnyh-oshibok-uchaschihsya-v-protsesse-obucheniya-algebre-posredstvom-formirovaniya-i-ispolzovaniya-r#ixzz2PJHLl9cJ
- http://www.referun.com/n/preduprezhdenie-tipichnyh-oshibok-uchaschihsya-v-protsesse-obucheniya-algebre-posredstvom-formirovaniya-i-ispolzovaniya-r
Определенный тип ошибочного доказательства
В математике некоторые виды ошибочного доказательства часто выставляется, а иногда и собирается, как иллюстрации концепции, называемой математической ошибкой . Существует различие между простой ошибкой и математической ошибкой в доказательстве, поскольку ошибка в доказательстве приводит к недействительному доказательству, в то время как в наиболее известных примерах математических ошибок присутствует некоторый элемент сокрытия или обмана в представлении доказательство.
Например, причина, по которой не действует достоверность, может быть отнесена к делению на ноль, которое скрыто алгебраической записью. Есть определенное качество математической ошибки: в том виде, в котором она обычно представлена, она приводит не только к абсурдному результату, но и делает это хитрым или хитрым способом. Следовательно, эти заблуждения по педагогическим причинам обычно принимают форму ложных доказательств очевидных противоречий. Хотя доказательства ошибочны, ошибки, как правило, преднамеренные, являются сравнительно малозаметными или предназначены для демонстрации того, что определенные шаги являются условными и неприменимы в случаях, которые являются исключениями из правил.
Традиционный способ представления математической ошибки состоит в том, чтобы дать неверный шаг вывода, смешанный с действительными шагами, так что значение ошибки здесь немного отличается от логического . заблуждение. Последнее обычно применяется к форме аргумента, которая не соответствует действующим правилам логического вывода, тогда как проблемный математический шаг обычно является правильным правилом, применяемым с неявным неверным предположением. Помимо педагогики, разрешение ошибки может привести к более глубокому пониманию предмета (например, введение аксиомы Паша евклидовой геометрии, теоремы пяти цветов теории графов ). Псевдария, древняя утерянная книга ложных доказательств, приписывается Евклиду.
. Математические заблуждения существуют во многих областях математики. В элементарной алгебре типичные примеры могут включать в себя этап, на котором выполняется деление на ноль, где корень извлекается неправильно или, в более общем смысле, когда разные значения многозначная функция приравнивается. Известные заблуждения также существуют в элементарной евклидовой геометрии и исчислении.
Содержание
- 1 Howlers
- 2 Деление на ноль
- 3 Анализ
- 4 Многозначные функции
- 4.1 Положительные и отрицательные корни
- 4.2 Квадратные корни из отрицательных чисел
- 4.3 Комплексные показатели
- 5 Геометрия
- 5.1 Ошибка равнобедренного треугольника
- 6 Доказательство индукцией
- 7 См. Также
- 8 Примечания
- 9 Ссылки
- 10 Внешние ссылки
Howlers
ddx 1 x = dd 1 x 2 = d ∖ d ∖ 1 x 2 = — 1 x 2 { displaystyle { begin {array} {l} ; ; ; { dfrac {d} {dx}} { dfrac {1} {x}} \ = { dfrac {d} {d}} { dfrac {1} {x ^ {2}} } \ = { dfrac {d ! ! ! backslash} {d ! ! ! backslash}} { dfrac {1} {x ^ {2}}} \ = — { dfrac {1} {x ^ {2}}} end {array}}}
.. Аномальное. отмена. в исчислении
Существуют примеры математически правильных результатов, полученных в результате неправильных рассуждений. Такой аргумент, каким бы верным он ни казался, математически неверен и широко известен как вопль. Ниже приведен пример сигнализатора, включающего аномальную отмену :
- 16 64 = 16/6/4 = 1 4. { displaystyle { frac {16} {64}} = { frac {16 ! ! ! /} {6 ! ! ! / 4}} = { frac {1} {4}}.}
Здесь, хотя вывод 16/64 = 1/4 верен, на среднем этапе происходит ошибочная, недопустимая отмена. Другой классический пример ревуна — доказательство теоремы Кэли – Гамильтона простой заменой скалярных переменных характеристического полинома на матрицу.
Поддельные доказательства, вычисления или выводы, построенные для получения правильного результата, несмотря на неправильную логику или операции, Максвелл назвал «завываниями». Вне математики термин ревун имеет различные значения, как правило, менее конкретные.
Деление на ноль
Ошибка деления на ноль имеет множество вариантов. В следующем примере используется замаскированное деление на ноль, чтобы «доказать», что 2 = 1, но его можно изменить, чтобы доказать, что любое число равно любому другому числу.
- Пусть a и b равны, ненулевые величины
- a = b { displaystyle a = b}
- a = b { displaystyle a = b}
- Умножить на a
- a 2 = ab { displaystyle a ^ {2} = ab}
- a 2 = ab { displaystyle a ^ {2} = ab}
- Вычтем b
- a 2 — b 2 = ab — b 2 { displaystyle a ^ {2} -b ^ {2} = ab-b ^ {2}}
- a 2 — b 2 = ab — b 2 { displaystyle a ^ {2} -b ^ {2} = ab-b ^ {2}}
- Разложим на множители обе стороны: левый множитель как разность квадратов, правый множится путем извлечения b из обоих членов
- (a — b) (a + b) = b (a — b) { displaystyle (ab) (a + b) = b (ab)}
- (a — b) (a + b) = b (a — b) { displaystyle (ab) (a + b) = b (ab)}
- Разделить (a — b)
- a + b = b { displaystyle a + b = b}
- a + b = b { displaystyle a + b = b}
- Учитывая, что a = b
- b + b = b { displaystyle b + b = b}
- b + b = b { displaystyle b + b = b}
- Объедините одинаковые термины слева
- 2 b = b { displaystyle 2b = b}
- 2 b = b { displaystyle 2b = b}
- Разделите на ненулевое b
- 2 = 1 { displaystyle 2 = 1}
- 2 = 1 { displaystyle 2 = 1}
- QED
Ошибка в строке 5: переход от строки 4 к строке 5 включает деление на a — b, которое равно нулю, поскольку a = b. Поскольку деление на ноль не определено, аргумент недопустим.
Анализ
Математический анализ как математическое исследование изменений и пределов может привести к математическим ошибкам — если свойства интегралов и дифференциалы игнорируются. Например, наивное использование интегрирования по частям может быть использовано для ложного доказательства того, что 0 = 1. Полагая u = 1 / log x и dv = dx / x, мы может писать:
- ∫ 1 x журнал xdx = 1 + ∫ 1 x журнал xdx { displaystyle int { frac {1} {x , log x}} , dx = 1 + int { frac {1} {x , log x}} , dx}
, после чего первообразные могут быть отменены с получением 0 = 1. Проблема в том, что первообразные определены только до a константа и их смещение на 1 или любое другое число разрешено. Ошибка действительно обнаруживается, когда мы вводим произвольные пределы интегрирования a и b.
- ∫ a b 1 x журнал x d x = 1 | ab + ∫ ab 1 x журнал xdx = 0 + ∫ ab 1 x log xdx = ∫ ab 1 x log xdx { displaystyle int _ {a} ^ {b} { frac {1} {x , log x}} , dx = 1 | _ {a} ^ {b} + int _ {a} ^ {b} { frac {1} {x , log x}} , dx = 0 + int _ {a} ^ {b} { frac {1} {x log x}} , dx = int _ {a} ^ {b} { frac {1} {x log x} } , dx}
Поскольку разница между двумя значениями постоянной функции равна нулю, один и тот же определенный интеграл появляется с обеих сторон уравнения.
Многозначные функции
Многие функции не имеют уникального обратного. Например, возведение числа в квадрат дает уникальное значение, но есть два возможных квадратных корня из положительного числа. Квадратный корень — это многозначный. Одно значение может быть выбрано по соглашению в качестве основного значения ; в случае квадратного корня неотрицательное значение является главным значением, но нет гарантии, что квадратный корень, заданный как главное значение квадрата числа, будет равен исходному числу (например, главный квадратный корень квадрата −2 равно 2). Это остается верным для корней n-й степени.
Положительных и отрицательных корней
Необходимо соблюдать осторожность при извлечении квадратного корня из обеих частей равенства. В противном случае «доказательство» составляет 5 = 4.
Доказательство:
- Начать с
- — 20 = — 20 { displaystyle -20 = -20}
- — 20 = — 20 { displaystyle -20 = -20}
- Запишите это как
- 25-45 = 16-36 { displaystyle 25-45 = 16-36}
- 25-45 = 16-36 { displaystyle 25-45 = 16-36}
- Перепишите как
- 5 2–5 × 9 = 4 2–4 × 9 { displaystyle 5 ^ {2 } -5 times 9 = 4 ^ {2} -4 times 9}
- 5 2–5 × 9 = 4 2–4 × 9 { displaystyle 5 ^ {2 } -5 times 9 = 4 ^ {2} -4 times 9}
- Добавьте 81/4 с обеих сторон:
- 5 2 — 5 × 9 + 81 4 = 4 2 — 4 × 9 + 81 4 { displaystyle 5 ^ {2} -5 times 9 + { frac {81} {4}} = 4 ^ {2} -4 times 9 + { frac {81} {4}}}
- 5 2 — 5 × 9 + 81 4 = 4 2 — 4 × 9 + 81 4 { displaystyle 5 ^ {2} -5 times 9 + { frac {81} {4}} = 4 ^ {2} -4 times 9 + { frac {81} {4}}}
- Это полные квадраты:
- (5 — 9 2) 2 = (4 — 9 2) 2 { displaystyle left (5 — { frac {9} {2}} right) ^ {2} = left (4 — { frac {9} {2}} right) ^ {2}}
- (5 — 9 2) 2 = (4 — 9 2) 2 { displaystyle left (5 — { frac {9} {2}} right) ^ {2} = left (4 — { frac {9} {2}} right) ^ {2}}
- Извлеките квадратный корень из обеих сторон:
- 5 — 9 2 = 4 — 9 2 { displaystyle 5 — { frac {9} {2}} = 4 — { frac {9} {2}}}
- 5 — 9 2 = 4 — 9 2 { displaystyle 5 — { frac {9} {2}} = 4 — { frac {9} {2}}}
- Добавьте 9/2 с обеих сторон:
- 5 = 4 { displaystyle 5 = 4}
- 5 = 4 { displaystyle 5 = 4}
- QED
Ошибка заключается в предпоследней строке, где берется квадратный корень из обеих частей: a = b означает, что a = b, только если a и b имеют одинаковый знак, что здесь не так. В данном случае это означает, что a = –b, поэтому уравнение должно выглядеть так:
- 5 — 9 2 = — (4 — 9 2) { displaystyle 5 — { frac {9} {2}} = — left (4 — { frac {9} {2}} right)}
которое, добавив 9/2 с обеих сторон, правильно сокращается до 5 = 5.
Еще один пример, иллюстрирующий опасность извлечение квадратного корня из обеих частей уравнения включает следующее фундаментальное тождество:
- cos 2 x = 1 — sin 2 x { displaystyle cos ^ {2} x = 1- sin ^ {2} x }
, которое выполняется как следствие теоремы Пифагора. Затем, извлекая квадратный корень,
- cos x = 1 — sin 2 x { displaystyle cos x = { sqrt {1- sin ^ {2} x}}}
так, чтобы
- 1 + соз х знак равно 1 + 1 — грех 2 х. { displaystyle 1+ cos x = 1 + { sqrt {1- sin ^ {2} x}}.}
Но оценивая это при x = π, мы получаем, что
- 1 — 1 = 1 + 1–0 { displaystyle 1-1 = 1 + { sqrt {1-0}}}
или
- 0 = 2 { displaystyle 0 = 2}
, что неверно.
Ошибка в каждом из этих примеров в основном заключается в том, что любое уравнение вида
- x 2 = a 2 { displaystyle x ^ {2} = a ^ {2}}
где a ≠ 0 { displaystyle a neq 0}, имеет два решения:
- x = ± a { displaystyle x = pm a}
и важно, чтобы проверьте, какое из этих решений имеет отношение к рассматриваемой проблеме. В приведенной выше ошибке квадратный корень, который позволил вывести второе уравнение из первого, действителен только тогда, когда cos x положителен. В частности, когда x установлен в π, второе уравнение становится недействительным.
Квадратные корни из отрицательных чисел
Недействительные доказательства с использованием степеней и корней часто бывают следующего вида:
- 1 = 1 = (- 1) (- 1) = — 1 — 1 знак равно я ⋅ я знак равно — 1. { displaystyle 1 = { sqrt {1}} = { sqrt {(-1) (- 1)}} = { sqrt {-1}} { sqrt {-1 }} = i cdot i = -1.}
Ошибка заключается в том, что правило xy = xy { displaystyle { sqrt {xy}} = { sqrt {x}} { sqrt {y }}}обычно допустимо, только если оба x { displaystyle x}
и y { displaystyle y}
неотрицательны (при работе с действительными числами), что здесь не так.
В качестве альтернативы, мнимые корни затемняются следующим образом:
- i = — 1 = (- 1) 2 4 = ((- 1) 2) 1 4 = 1 1 4 = 1 { displaystyle i = { sqrt {-1}} = left (-1 right) ^ { frac {2} {4}} = left ( left (-1 right) ^ {2} right) ^ { frac {1} {4}} = 1 ^ { frac {1} {4}} = 1}
Ошибка здесь в последнем равенство, где мы игнорируем другие корни четвертой степени из 1, которые равны -1, i и -i (где i — мнимая единица ). Поскольку мы возводили нашу фигуру в квадрат, а затем пустили корни, мы не всегда можем предположить, что все корни будут правильными. Таким образом, правильные корни четвертой степени — это i и −i, которые представляют собой мнимые числа, возведенные в квадрат до −1.
Комплексные показатели
Когда число возводится в комплексную степень, результат не определяется однозначно (см. Отказ мощности и тождества логарифма ). Если это свойство не распознается, могут возникнуть следующие ошибки:
- e 2 π i = 1 (e 2 π i) i = 1 ie — 2 π = 1 { displaystyle { begin {align} e ^ {2 pi i} = 1 \ влево (e ^ {2 pi i} right) ^ {i} = 1 ^ {i} \ e ^ {- 2 pi} = 1 \ end {align}}}
Ошибка здесь в том, что правило умножения показателей степени, как при переходе к третьей строке, не применяется без изменений с комплексными показателями, даже если при установке обеих сторон в степень i только главный значение выбрано. Когда они рассматриваются как многозначные функции, обе стороны производят одинаковый набор значений, являющихся {e | n ∈ ℤ}.
Геометрия
Многие математические ошибки в геометрии возникают из-за использования аддитивного равенства, включающего ориентированные величины (например, добавление векторов вдоль заданной линии или добавление ориентированных углов в плоскости) к действительной идентичности, но которая фиксирует только абсолютное значение (одной из) этих величин. Затем эта величина включается в уравнение с неправильной ориентацией, чтобы сделать абсурдный вывод. Эта неправильная ориентация обычно подразумевается путем предоставления неточной схемы ситуации, в которой относительное положение точек или линий выбирается таким образом, который фактически невозможен в соответствии с гипотезами аргумента, но неочевидно.
В общем, такое заблуждение легко выявить, нарисовав точную картину ситуации, в которой некоторые относительные положения будут отличаться от тех, что указаны на представленной диаграмме. Чтобы избежать таких заблуждений, правильный геометрический аргумент с использованием сложения или вычитания расстояний или углов должен всегда доказывать, что величины включаются с их правильной ориентацией.
Ошибка равнобедренного треугольника
Ошибка равнобедренного треугольника из (Максвелл 1959, Глава II, § 1) имеет целью показать, что каждый треугольник равно равнобедренный, что означает, что две стороны треугольника конгруэнтны. Это заблуждение было приписано Льюису Кэрроллу.
. Дан треугольник △ ABC, докажите, что AB = AC:
- Проведите линию пополам ∠A.
- Проведите серединный перпендикуляр отрезка BC, который делит BC пополам в точке D.
- Пусть эти две прямые пересекаются в точке O.
- Нарисуйте линию OR перпендикулярно AB, прямую OQ перпендикулярно AC.
- Нарисуйте линии OB и OC.
- По AAS, RAO ≅ △ QAO (∠ORA = ∠OQA = 90 °; ∠RAO = ∠QAO; AO = AO (общая сторона)).
- По RHS, △ ROB ≅ △ QOC (∠BRO = ∠CQO = 90 °; BO = OC (гипотенуза); RO = OQ (нога)).
- Таким образом, AR = AQ, RB = QC и AB = AR + RB = AQ + QC = AC.
QED
В качестве следствия можно показать, что все треугольники равносторонние, показав, что AB = BC и AC = BC таким же образом.
Ошибка доказательства заключается в предположении на диаграмме, что точка O находится внутри треугольника. Фактически, O всегда лежит в описанной окружности треугольника ABC (за исключением равнобедренных и равносторонних треугольников, в которых AO и OD совпадают). Более того, можно показать, что если AB длиннее, чем AC, то R будет лежать внутри AB, а Q будет лежать вне AC, и наоборот (фактически, любая диаграмма, нарисованная с помощью достаточно точных инструментов, подтвердит два вышеупомянутых факта.). Из-за этого AB по-прежнему AR + RB, но AC на самом деле AQ — QC; и, следовательно, длины не обязательно одинаковы.
Доказательство по индукции
Существует несколько ошибочных доказательств по индукции, в которых один из компонентов, базисный случай или индуктивный шаг, неверен. Интуитивно, доказательства с помощью индукции работают, утверждая, что если утверждение истинно в одном случае, оно истинно в следующем, и, следовательно, многократно применяя это утверждение, можно показать, что оно истинно для всех случаев. Следующее «доказательство» показывает, что все лошади одного цвета..
- Допустим, что любая группа из N лошадей одного цвета.
- Если мы удалим лошадь из группы, у нас есть группа из N — 1 лошадей одного цвета. Если мы добавим еще одну лошадь, у нас будет еще одна группа из N лошадей. Согласно нашему предыдущему предположению, все лошади одного цвета в этой новой группе, так как это группа из N лошадей.
- Таким образом, мы построили две группы из N лошадей одного цвета, с N — 1 общая лошадь. Поскольку у этих двух групп есть несколько общих лошадей, эти две группы должны быть одного цвета друг с другом.
- Следовательно, объединяя всех используемых лошадей, мы получаем группу из N + 1 лошадей одного цвета..
- Таким образом, если все N лошадей одного цвета, все N + 1 лошади одного цвета.
- Это явно верно для N = 1 (т.е. одна лошадь — это группа, в которой все лошади одного цвета). Таким образом, по индукции N лошадей одного цвета для любого натурального числа N. т. Е. Все лошади одного цвета.
Ошибка в этом доказательстве возникает в строке 3. При N = 1 две группы лошадей имеют N — 1 = 0 общих лошадей и, следовательно, не обязательно одного цвета, поэтому группа из N + 1 = 2 лошадей не обязательно будет всех одного цвета. Импликация «все N лошадей одного цвета, тогда N + 1 лошадей одного цвета» работает для любого N>1, но не выполняется, когда N = 1. Базовый случай верен, но шаг индукции имеет фундаментальный недостаток. Если бы нам дополнительно дали тот факт, что любые две лошади одного цвета, то мы могли бы правильно произвести индукцию из базового случая N = 2.
См. Также
- Аномальное исключение — арифметическая ошибка
- Деление на ноль — Результат, полученный при делении действительного числа на ноль
- Список неполных доказательств — Статья в Википедии со списком
- Математическое совпадение — совпадение в математике
- Парадокс — Утверждение, которое явно противоречит самому себе
- Доказательство запугиванием — Метод убедить кого-то, используя жаргон или заявляя его ясным
Примечания
Ссылки
Внешние ссылки
- Недействительными доказательствами в Разрезать узел (включая литературные ссылки)
- Классические заблуждения с некоторым обсуждением
- Больше недействительных доказательств с AhaJokes.com
- Математические шутки, включая недействительное доказательство