Содержание:
Внутренняя энергия:
Вы знаете, что движущееся тело обладает кинетической энергией. А если оно еще и взаимодействует с другим телом, то обладает потенциальной энергией. Оба вида энергии представляют собой механическую энергию. Они взаимно превращаемы: кинетическая энергия может переходить в потенциальную и наоборот. Кроме того, вы знаете, что любое тело имеет дискретную структуру, т. е. состоит из частиц (атомов, молекул). Частицы находятся в непрерывном хаотическом движении. А частицы жидкости и твердого тела еще и взаимодействуют между собой. Следовательно, частицы обладают кинетической, а частицы жидкости и твердых тел — еще и потенциальной энергией. Сумма кинетической и потенциальной энергий всех частиц тела называется внутренней энергией. Внутренняя энергия измеряется в джоулях. Чем отличается внутренняя энергия от механической? В чем ее особенности? Может ли механическая энергия переходить во внутреннюю?
Для ответа на эти вопросы рассмотрим пример. Шайба, двигавшаяся горизонтально по льду (рис. 1), остановилась. Как изменилась ее механическая энергия относительно льда?
Кинетическая энергия шайбы уменьшилась до нуля. Положение шайбы над уровнем льда не изменилось, шайба не деформировалась. Значит, изменение потенциальной энергии равно нулю. Означает ли это, что се механическая (кинетическая) энергия исчезла бесследно? Нет. Механическая энергия шайбы перешла во внутреннюю энергию шайбы и льда.
А может ли внутренняя энергия тела, как механическая, быть равной нулю? Движение частиц, из которых состоит тело, не прекращается даже при самых низких температурах. Значит, тело всегда (подчеркиваем, всегда) обладает некоторым запасом внутренней энергии. Его можно либо увеличить, либо уменьшить — и только!
Велико ли значение внутренней энергии тела? Энергия одной частицы, например кинетическая, в силу незначительности ее массы чрезвычайно мала. Расчеты для средней энергии поступательного движения молекулы кислорода показывают, что ее значение при комнатной температуре
Главные выводы:
- Независимо от того, есть у тела механическая энергия или нет, оно обладает внутренней энергией.
- Внутренняя энергия тела равна сумме кинетической и потенциальной энергий частиц, из которых оно состоит.
- Внутренняя энергия тела всегда не равна нулю.
Способы изменения внутренней энергии
Чтобы изменить механическую энергию тела, надо изменить скорость его движения, взаимодействие с другими телами или взаимодействие частей тела. Вы уже знаете, что это достигается совершением работы.
Как можно изменить (увеличить или уменьшить) внутреннюю энергию тела? Рассуждаем логически. Внутренняя энергия определяется как сумма кинетической и потенциальной энергий частиц. Значит, нужно изменить либо скорость движения частиц, либо их взаимодействие (изменить расстояния между ними). Очевидно, можно изменить и скорость, и расстояния между частицами одновременно. Изменить скорость частиц тела можно, увеличив или уменьшив его температуру. Действительно, наблюдения за диффузией показывают, что быстрота ее протекания увеличивается при нагревании (рис. 4, а, б).
Значит, увеличивается средняя скорость движения частиц, а следовательно, их средняя кинетическая энергия. Отсюда следует важный вывод: температура является мерой средней кинетической энергии частиц.
Как изменить кинетическую энергию частиц тела? Существуют два способа. Рассмотрим их на опытах. Будем натирать колбу с воздухом полоской сукна (рис. 5).
Через некоторое время уровень жидкости в правом колене манометра (см. рис. 5) опустится, т. е. давление воздуха в колбе увеличится. Это говорит о нагревании воздуха. Значит, увеличилась скорость движения и кинетическая энергия его молекул, а следовательно, и внутренняя энергия. Но за счет чего? Очевидно, за счет совершения механической работы при трении сукна о колбу. Нагрелась колба, а от нее — газ.
Проведем еще один опыт. В толстостенный стеклянный сосуд нальем немного воды (чайную ложку для увлажнения воздуха в нем. Насосом (рис. 6) будем накачивать в сосуд воздух. Через несколько качков пробка вылетит, а в сосуде образуется туман. Из наблюдений за окружающей средой мы знаем, что туман появляется тогда, когда после теплого дня наступает холодная ночь. Образование тумана в сосуде свидетельствует об охлаждении воздуха, т. е. об уменьшении его внутренней энергии. Но почему уменьшилась энергия? Потому что за ее счет совершена работа по выталкиванию пробки из сосуда.
Сравним результаты опытов. В обоих случаях изменилась внутренняя энергия газа, но в первом опыте она увеличилась, так как работа совершалась внешней силой (над колбой с газом), а во втором — уменьшилась, ибо работу совершала сила давления самого газа.
А можно ли, совершая работу, изменить потенциальную энергию взаимодействия молекул?
Опять обратимся к опыту. Два куска льда при О °C будем тереть друг о друга (рис. 7).
Лед превращается в воду, при этом температура воды и льда остается постоянной, равной О °C (см. рис. 7). На что тратится механическая работа силы трения?
Конечно же, на изменение внутренней энергии!
Но кинетическая энергия молекул не изменилась, так как температура не изменилась. Лед превратился в воду. При этом изменились силы взаимодействия молекул (напоминаем, что лед и вода состоят из одинаковых молекул), а следовательно, изменилась их потенциальная энергия.
Совершение механической работы — один из способов изменения внутренней энергии тела.
А есть ли возможность изменить внутреннюю энергию тела, не совершая механическую работу?
Да, есть. Нагреть воздух в колбе (рис. 8), расплавить лед (рис. 9) можно с помощью спиртовки, передав и воздуху, и льду теплоту. В обоих случаях внутренняя энергия увеличивается.
При охлаждении тел (если колбы со льдом и воздухом поместить в морозильник) их внутренняя энергия уменьшается. Теплота от тел передается окружающей среде.
Процесс изменения внутренней энергии тела, происходящий без совершения работы, называется теплопередачей (теплообменом).
Таким образом, совершение механической работы и теплопередача — два способа изменения внутренней энергии тела.
Величину, равную изменению внутренней энергии при теплопередаче, называют количеством теплоты (обозначается Q). Единицей количества теплоты, как работы и энергии, в СИ является 1 джоуль.
Для любознательных:
Физики XVIII в. и первой половины XIX в. рассматривали теплоту не как изменение энергии, а как особое вещество — теплород — жидкость (флюид), которая может перетекать от одного тела к другому. Если тело нагревалось, то считалось, что в него вливался теплород, а если охлаждалось — то выливался. При нагревании тела расширяются. Это объяснялось тем, что теплород имеет объем. Но если теплород — вещество, то тела при нагревании должны увеличивать свою массу. Однако взвешивания показывали, что масса тела не менялась. Поэтому теплород считали невесомым. Теорию теплорода поддерживали многие ученые, в том числе и такой гениальный ученый, как Г. Галилей. Позже Дж. Джоуль на основании проведенных им опытов пришел к выводу, что теплород не существует и что теплота есть мера изменения кинетической и потенциальной энергий движущихся частиц тела.
В дальнейшем выражение «сообщить телу количество теплоты» мы будем понимать как «изменить внутреннюю энергию тела без совершения механической работы, т. е. путем теплообмена». А выражение «нагреть тело» будем понимать как «повысить его температуру» любым из двух способов.
Главные выводы:
- Внутреннюю энергию тела можно изменить путем совершения механической работы или теплопередачи (теплообмена).
- Изменение внутренней энергии при нагревании или охлаждении тела при постоянном объеме связано с изменением средней кинетической энергии его частиц.
- Изменение внутренней энергии тела при неизменной температуре связано с изменением потенциальной энергии его частиц.
Основы термодинамики
МКТ стала общепризнанной на рубеже XIX и XX веков. Задолго до ее создания исследованием тепловых процессов занималась термодинамика — раздел физики, изучающий превращение внутренней (тепловой) энергии в другие виды энергии и наоборот, а также количественные соотношения при таких превращениях.
- Заказать решение задач по физике
Внутренняя энергия и ее особенности
Внутренняя энергия макроскопического тела определяется характером движения и взаимодействия всех микрочастиц, из которых состоит тело (система тел). Таким образом, к внутренней энергии следует отнести:
- кинетическую энергию хаотического (теплового) движения частиц вещества (атомов, молекул, ионов);
- потенциальную энергию взаимодействия частиц вещества;
- энергию взаимодействия атомов в молекулах (химическую энергию);
- энергию взаимодействия электронов и ядра в атоме и энергию взаимодействия нуклонов в ядре (внутриатомную и внутриядерную энергии).
Однако для описания тепловых процессов важно не столько значение внутренней энергии, как ее изменение. При тепловых процессах химическая, внутриатомная и внутриядерная энергии практически не изменяются. Именно поэтому внутренняя энергия в термодинамике определяется как сумма кинетических энергий хаотического (теплового) движения частиц вещества (атомов, молекул, ионов), из которых состоит тело, и потенциальных энергий их взаимодействия.
Внутреннюю энергию обозначают символом U.
Единица внутренней энергии в СИ — джоуль: [U]=1 Дж (J).
Особенности внутренней энергии идеального газа
- Атомы и молекулы идеального газа практически не взаимодействуют друг с другом, поэтому внутренняя энергия идеального газа равна кинетической энергии поступательного и вращательного движений его частиц.
- Внутренняя энергия данной массы идеального газа прямо пропорциональна его абсолютной температуре. Докажем данное утверждение для одноатомного газа. Атомы такого газа движутся только поступательно, поэтому, чтобы определить его внутреннюю энергию, следует среднюю кинетическую энергию поступательного движения атомов умножить на количество атомов:
Итак, для одноатомного идеального газа:
. Используя уравнение состояния
, выражение для внутренней энергии идеального одноатомного газа можно представить так:
- Внутренняя энергия — функция состояния системы, то есть она однозначно определяется основными макроскопическими параметрами (p, V, T), характеризующими систему. Независимо от того, каким образом система переведена из одного состояния в другое, изменение внутренней энергии будет одинаковым.
- Внутреннюю энергию можно изменить двумя способами: совершением работы и теплопередачей.
Какие существуют виды теплопередачи
Теплопередача (теплообмен) — процесс изменения внутренней энергии тела или частей тела без совершения работы. Процесс теплопередачи возможен только при наличии разности температур. Самопроизвольно тепло всегда передается от более нагретого тела к менее нагретому. Чем больше разность температур, тем быстрее — при прочих равных условиях — протекает процесс передачи тепла.
Виды теплопередачи | ||
---|---|---|
Теплопроводность | Конвекция | Излучение |
Вид теплопередачи, который обусловлен хаотическим движением частиц вещества и не сопровождается переносом этого вещества. Лучшие проводники тепла — металлы, плохо проводят тепло дерево, стекло, кожа, жидкости (за исключением жидких металлов); самые плохие проводники тепла — газы. Передача энергии от горячей воды к батарее отопления, от поверхности воды до ее нижних слоев и т. д. происходит благодаря теплопроводности. |
Вид теплопередачи, при котором тепло переносится потоками жидкости или газа. Теплые потоки жидкости или газа имеют меньшую плотность, поэтому под действием архимедовой силы поднимаются, а холодные потоки — опускаются. Благодаря конвекции происходит циркуляция воздуха в помещении, нагревается жидкость в стоящей на плите кастрюле, существуют ветры и морские течения и т. д. В твердых телах конвекция невозможна. | Вид теплопередачи, при котором энергия передается посредством электромагнитных волн. Излучение — универсальный вид теплопередачи: тела всегда излучают и поглощают инфракрасное (тепловое) излучение. Это единственный вид теплообмена, возможный в вакууме (энергия от Солнца передается только излучением). Лучше излучают и поглощают энергию тела с темной поверхностью. |
Как определить количество теплоты
Количество теплоты Q — это физическая величина, равная энергии, которую тело получает (или отдает) в ходе теплопередачи.
Единица количества теплоты в СИ — джоуль: [П] =1 Дж (J).
Из курса физики 8 класса вы знаете, что количество теплоты, которое поглощается при нагревании вещества (или выделяется при его охлаждении), вычисляют по формуле: Q=cm∆Т=cm∆t , где c — удельная теплоемкость вещества; m — масса вещества; — изменение температуры.
Обратите внимание! Произведение удельной теплоемкости на массу вещества, из которого изготовлено тело, называют теплоемкостью тела: C=cm . Если известна теплоемкость C тела, то количество теплоты, которое получает тело при изменении температуры на ∆T, вычисляют по формуле: Q=C∆T .
Расчет количества теплоты при фазовых переходах | |
---|---|
Кристаллическое состояние ↔ Жидкое состояние | Жидкое состояние ↔ Газообразное состояние |
Температуру, при которой происходят фазовые переходы «кристалл → жидкость» и «жидкость → кристалл», называют температурой плавления. Температура плавления зависит от рода вещества и внешнего давления. Количество теплоты Q, которое поглощается при плавлении кристаллического вещества (или выделяется при кристаллизации жидкости), вычисляют по формуле: Q = λm, где m — масса вещества; λ — удельная теплота плавления. |
Фазовые переходы «жидкость → пар» и «пар → жидкость» происходят при любой температуре. Количество теплоты Q, которая поглощается при парообразовании (или выделяется при конденсации), вычисляют по формуле: Q=rm (Q=Lm), где m — масса вещества; r (L) — удельная теплота парообразования при данной температуре (обычно в таблицах представлена удельная теплота парообразования при температуре кипения жидкости). |
Напомним: и при плавлении, и при кипении температура вещества не изменяется. |
Пример решения задачи №1
Неон массой 100 г находится в колбе объемом 5,0 л. В процессе изохорного охлаждения давление неона уменьшилось с 100 до 50 кПа. На сколько при этом изменились внутренняя энергия и температура неона?
Решение:
Неон — одноатомный газ; для таких газов изменение внутренней энергии равно:
Поскольку охлаждение изохорное, объем неона не изменяется: После преобразований получим:
Проверим единицы, найдем значения искомых величин:
Анализ результатов. Знак «–» свидетельствует о том, что внутренняя энергия и температура неона уменьшились, — это соответствует изохорному охлаждению. Ответ: ∆U = –375 Дж; ∆T = –6 К.
Пример решения задачи №2
Внутренний алюминиевый сосуд калориметра имеет массу 50 г и содержит 200 г воды при температуре 30 °С. В сосуд бросили кубики льда при температуре 0 °С, в результате чего температура воды в калориметре снизилась до 20 °С. Определите массу льда. Удельные теплоемкости воды и алюминия: = 4200 Дж/(кг · К),
= 920 Дж/(кг · К); удельная теплота плавления льда — 334 кДж/кг.
Анализ физической проблемы.
Калориметр имеет такое устройство, что теплообмен с окружающей средой практически отсутствует, поэтому для решения задачи воспользуемся уравнением теплового баланса. В теплообмене участвуют три тела: вода, внутренний сосуд калориметра, лед.
Решение:
Запишем уравнение теплового баланса:
После преобразований получим:
Проверим единицу, найдем значение искомой величины:
Ответ: = 21 г.
Выводы:
- В термодинамике под внутренней энергией U тела понимают сумму кинетических энергий хаотического движения частиц вещества, из которых состоит тело, и потенциальных энергий их взаимодействия. Внутренняя энергия однозначно определяется основными макроскопическими параметрами (p, V, T), характеризующими термодинамическую систему. Внутреннюю энергию идеального одноатомного газа определяют по формулам:
- Внутреннюю энергию можно изменить двумя способами: совершением работы и теплопередачей. Существует три вида теплопередачи: теплопроводность, конвекция, излучение.
- Физическую величину, равную энергии, которую тело получает или отдает при теплопередаче, называют количеством теплоты (Q): Q=cm∆T = С∆T — количество теплоты, которое поглощается при нагревании тела (или выделяется при его охлаждении); Q = λm — количество теплоты, которое поглощается при плавлении вещества (или выделяется при кристаллизации); Q=rm (Q=Lm) — количество теплоты, которое поглощается при парообразовании вещества (или выделяется при конденсации).
- Теплопроводность в физике
- Конвекция в физике
- Излучение тепла в физике
- Виды излучений в физике
- Машины и механизмы в физике
- Коэффициент полезного действия (КПД) механизмов
- Тепловые явления в физике
- Тепловое движение в физике и его измерение
Внутренняя энергия тела не может являться постоянной величиной. Она может изменяться у любого тела. Если повысить температуру тела, то его внутренняя энергия увеличится, т.к. увеличится средняя скорость движения молекул. Таким образом, увеличивается кинетическая энергия молекул тела. И, наоборот, при понижении температуры, внутренняя энергия тела уменьшается.
Можно сделать вывод: внутренняя энергия тела изменяется, если меняется скорость движения молекул. Попытаемся определить, каким методом можно увеличить или уменьшить скорость передвижения молекул. Рассмотрим следующий опыт. Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Затем обвяжем его веревкой и начнем интенсивно двигать веревкой в разные стороны. Спустя определенное время, эфир закипит, и сила пара вытолкнет пробку. Опыт демонстрирует, что внутренняя энергия вещества (эфира) возросла: ведь он изменил свою температуру, при этом закипев.
Увеличение внутренней энергии произошло за счет совершения работы при натирании трубкой веревкой.
Как мы знаем, нагревание тел может происходить и при ударах, сгибании или разгибании, говоря проще, при деформации. Во всех приведенных примерах, внутренняя энергия тела возрастает.
Таким образом, внутреннюю энергию тела можно увеличить, совершая над телом работу.
Если же работу выполняет само тело, его внутренняя энергия уменьшается.
Рассмотрим еще один опыт.
В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.
Спустя некоторое время пробка вылетит из сосуда. В тот момент, когда пробка вылетает из сосуда, мы сможем увидеть образование тумана. Следовательно, его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.
Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы. Рассмотрим пример, вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит, делаем вывод, изменение внутренней энергии может произойти не из-за совершения определенной работы.
Рассмотрим еще один пример.
В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, будет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.
Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.
Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!
Зарегистрироваться
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Остались вопросы?
Задайте свой вопрос и получите ответ от профессионального преподавателя.
«Внутренняя энергия»
Существуют два вида механической энергии: кинетическая и потенциальная. Сумма кинетической и потенциальной энергии тела называется его полной механической энергией, которая зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует. Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии. (подробнее о Механической энергии в конспекте «Механическая энергия. Закон сохранения энергии»)
Внутренняя энергия
Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.
При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия — внутренняя энергия воздуха, находящегося в банке.
Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U. Единицей внутренней энергии является 1 джоуль (1 Дж). U = Eк + En.
Способы изменения внутренней энергии
Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела. Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела.
Внутреннюю энергию можно изменить при совершении работы. Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.
Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.
Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды — повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи, о чем и свидетельствует понижение её температуры.
Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.
Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.
Конспект урока по физике в 8 классе «Внутренняя энергия».
Следующая тема: «Виды теплопередачи: теплопроводность, конвекция, излучение».
Вы уже знаете, что механическая энергия тела (кинетическая и потенциальная) может изменяться. Внутренняя энергия тела также не является постоянной величиной, она может менять свое значение.
Внутренняя энергия зависит от температуры: при ее повышении внутренняя энергия увеличивается. Происходит это за счет увеличения средней скорости движения молекул и возрастания их кинетической энергии.
При понижении температуры внутренняя энергия, наоборот, понижается. Значит, внутренняя энергия тела меняется при изменении скорости движения молекул.
На данном уроке мы выясним, каким способом можно изменить скорость движения молекул. Таким образом, мы определим, при каких условиях происходит изменение внутренней энергии и дадим определения новым понятиям.
Совершение работы над телом
Рассмотрим опыт, представленный на рисунке 1.
У нас есть металлическая трубка, закрепленная на подставке. Наливаем в трубку немного эфира.
Эфир — бесцветная летучая жидкость. Часто употребляется в технике и медицине для дезинфекции. Имеет температуру кипения около $35 degree C$.
Закрываем пробкой. Обвиваем вокруг трубки веревку, и начинаем быстро двигать ее в разные стороны. Что произойдет?
После некоторого времени наших манипуляций с веревкой, эфир закипит. Его пар вытолкнет пробку.
Такой способ используется при разведении огня в диких условиях. Древние люди обладали им в совершенстве. При вращении сухой кусок дерева нагревался более чем на $250 degree C$ и загорался.
Внутренняя энергия эфира изменилась — она увеличилась. Он не только нагрелся, но и закипел. Натирая трубку веревкой, мы совершали механическую работу.
Также тела нагреваются при деформациях. То есть при ударах (вспомните опыт из прошлого урока с шаром из свинца), разгибании, сгибании (можно провести простой опыт, сгибая медную проволоку) и др.
Внутреннюю энергию тела можно увеличить, совершая над телом работу.
Когда нам холодно, мы начинаем дрожать — происходят мышечные сокращения. Таким образом наш организм увеличивает температуру тела — за счет работы мышц увеличивается внутренняя энергия.
Совершение работы самим телом
Рассмотрим опыт, представленный на рисунке 2.
У нас имеется стеклянный сосуд, который закрывается пробкой. В пробке есть специальное отверстие. Через него с помощью насоса начнем закачивать в сосуд воздух.
Через некоторое время пробка вылетит. В этот момент можно заметить как образуется туман. Это означает, что воздух в сосуде стал холоднее.
Вытолкнув пробку, сжатый воздух в сосуде совершил работу. При этом температура воздуха понизилась. Так мы можем сказать, что его внутренняя энергия тоже уменьшилась.
Если работу совершает само тело, то его его внутренняя энергия уменьшается.
Внутреннюю энергию тела можно изменить путем совершения работы.
Теплопередача
Можно ли изменить внутреннюю энергию тела без совершения работы?
Мы часто наблюдаем ситуации, когда увеличивается температура тела. Например, закипание воды в чайнике, воздух нагревается от батарей отопления в квартире, нагреваются предметы, оставленные на солнце. Работа во всех этих примерах не совершается.
Попробуем объяснить увеличение внутренней энергии в таких случаях на следующем примере. Опустим обычную металлическую ложку в стакан с горячей водой (рисунок 3).
Что будет происходить?
- Температура горячей воды намного больше температуры холодной ложки. Значит, кинетическая энергия молекул воды больше кинетической энергии частиц металлической ложки
- Молекулы воды начинают взаимодействовать с частицами металла — передают им часть своей кинетической энергии
- Энергия молекул воды уменьшается, энергия частиц металла увеличивается
- Температура воды уменьшается, температура ложки увеличивается
- Вскоре им температуры выравниваются
Внутреннюю энергию тела можно изменить путем теплопередачи.
Теплопередача — это процесс изменения внутренней энергии без совершения работы самими телом или над ним.
- Происходит между телами с разной температурой
- Идет в направлении от тел с более высокой температурой к телам с более низкой
- Заканчивается, когда температуры тел выравниваются (становятся равны друг другу)
В мороз многие водоплавающие птицы (например, утки) охотно залезают в воду. В такую погоду температура воды выше температуры воздуха, что позволяет птицам не замерзать.
Способы изменения внутренней энергии тела
Итак,
внутреннюю энергию можно изменить двумя способами: совершая механическую работу или теплопередачей.
Существует три вида теплопередачи:
- Теплопроводность
- Конвекция
- Излучение
Виды теплопередачи будут изучены нами в следующих уроках.
Пути изменения внутренней энергии тела.
1) Совершение работы (например, трение).
Рис. (1). Древний способ разведения огня
Если работа совершается над телом, его внутренняя энергия увеличивается, а если работу совершает само тело, то его внутренняя энергия уменьшается.
2) Теплопередача (без совершения работы).
а) Теплопроводность — передача внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.
Рис. (2). Механизм теплопроводности
б) Конвекция — перенос теплоты в жидкостях, газах или сыпучих средах потоками самого вещества (вынужденно или самопроизвольно).
Рис. (3). Радиатор
3) Излучение — испускание и распространение энергии в виде волн и частиц.
Рис. (4). Свеча
Энергия, которую получает или теряет тело при теплопередаче, называется количеством теплоты.
Количество теплоты, которое необходимо для нагревания тела (или выделяемое им при остывании), зависит от следующих условий.
1) От массы тела.
Пример:
при нагревании (2) кг воды потребуется в (2) раза большее количество теплоты, чем при нагревании (1) кг воды на то же число градусов.
Рис. (5). Подогрев вещества в сосуде, разный объём
Количество теплоты для нагревания тела пропорционально его массе: для большего тела нужно затратить больше энергии. В замкнутой системе поглощённое при нагревании количество теплоты излучается в окружающую среду при охлаждении.
2) От того, на сколько градусов нагревается тело (от разности температур тела).
Пример:
при нагревании воды на (5°С) необходимо в (2) раза меньшее количество теплоты, чем при нагревании этой же воды на (10°С).
Рис. (6). Подогрев вещества в сосуде, разная температура
Обрати внимание!
Чем больше разность температур тела, тем большее количество теплоты необходимо для его нагревания.
3) От того, из какого вещества тело состоит, т. е. от рода вещества тела.
Пример:
при нагревании керосина и воды одинаковой массы на одно и то же число градусов требуется разное количество теплоты. Для нагревания керосина необходимо в (2) раза меньшее количество теплоты, чем для нагревания воды.
Рис. (7). Подогрев вещества в сосуде, разные свойства
Обрати внимание!
Количество теплоты обозначают буквой (Q) и измеряют как работу и энергию — в джоулях (Дж).
Применяют кратные и дольные единицы измерения количества теплоты. Например:
(1) МДж (= 1000000) Дж;
(1) кДж (= 1000) Дж;
(1) мДж (= 0,001) Дж.
Источники:
Рис. 2. Механизм теплопроводности. © ЯКласс.
Рис. 3. Радиатор. © ЯКласс.
Рис. 5. Подогрев вещества в сосуде, разный объём. © ЯКласс.
Рис. 6. Подогрев вещества в сосуде, разная температура. © ЯКласс.
Рис. 7. Подогрев вещества в сосуде, разные свойства. © ЯКласс.
4. Способы изменения внутренней энергии
Внутреннюю энергию тела можно изменить:
1) теплопередачей (теплопроводностью, конвекцией и излучением);
2) совершением механической работы над телом (трение, удар, сжатие и др.).
Энергия тела, которую оно получает или отдаёт при обмене теплом с другими телами (без совершения работы), называют количеством теплоты.
$$ {Q}= Delta U$$ — количество теплоты. | (8) |
Рассмотрим эти процессы более подробно.
1. Виды теплопередачи
А)
явление передачи теплоты (энергии) от одной части тела (более нагретой) к другой (менее нагретой).
Передача теплоты осуществляется в основном за счёт колебательного движения и столкновения отдельных молекул. При этом при столкновениях некоторая доля кинетической энергии молекул от одной (более нагретой) части тела передаётся молекулам другой (менее нагретой) его части. Важно заметить, что при теплопроводности само вещество не перемещается, а теплопередача всегда идёт в определённом направлении: внутренняя энергия горячего тела уменьшается, а внутренняя энергия холодного тела увеличивается.
В твёрдых металлических телах теплопроводность осуществляется преимущественно за счёт движущихся особым образом свободных электронов (в металлах также осуществляется перенос тепла колеблющимися атомами, но их вклад сравнительно небольшой).
Благодаря непрерывному взаимодействию соседствующих молекул, теплопроводность в твёрдых телах и жидкостях происходит заметно быстрее, чем в газах.
Интенсивность теплопроводности между телами зависит от разности их температур, площади поверхности, через которую происходит теплопередача, а также от свойств вещества, расположенного между телами.
В обычных условиях для расчёта количества теплоты `Q`, передаваемого через слой вещества путём теплопроводности, пользуются следующим соотношением:
$$ Q=kfrac{S·Delta T}{h}·t$$ — закон Фурье. | (9) |
Здесь | $$ k$$ – коэффициент теплопроводности вещества слоя, |
$$ S$$ – площадь поверхности, через которую происходит теплопередача (см. рис 3), | |
$$ h$$ – толщина слоя вещества, | |
$$ t$$ – время наблюдения, | |
$$ Delta T={T}_{1}-{T}_{2} $$ — разность температур между границами слоя $$ ({T}_{1}>{T}_{2})$$. |
Например, тепловая энергия уходит из комнаты через стену на улицу.
В этом случае:
$$ S$$ – площадь поверхности стены,
- $$ h$$ – толщина слоя вещества, составляющего стену.
- $$ Delta T$$ – разность температур между комнатой $$ left({T}_{1}right)$$ и улицей $$ left({T}_{2}right)$$;
$$ k$$ – коэффициент теплопроводности вещества стены.
Следует отметить, что значения коэффициентов теплопроводности различных веществ отличаются столь сильно, что некоторые вещества применяют как эффективные теплопроводники (металлы, термомастика), а другие, наоборот, как теплоизоляторы (кирпич, дерево, пенопласт).
Б) В поле силы тяжести ещё одним механизмом теплопередачи может служить конвекция.
называют процесс перемешивания вещества, осуществляемый силой Архимеда, вследствии разности температур.
Конвекция может быть обнаружена в газах, жидкостях или сыпучих материалах.
Например, в кастрюле (см. рисунок 4) нагреваемая снизу вода расширяется, плотность её уменьшается. Сила Архимеда, действующая на небольшой фрагмент прогретой воды, поднимает её вверх. На поверхности прогретая вода остывает, смешиваясь с более холодной водой, испаряясь и т. п. Вследствие чего вода сжимается, становится более плотной, и тонет. Возникает конвективная ячейка.
На практике часто встречается принудительная конвекция, осуществляемая насосами или специальными перемешивающими механизмами.
В) Все тела, температура которых отлична от абсолютного нуля, излучают электромагнитные волны, которые переносят энергию. При комнатной температуре это в основном инфракрасное излучение. Так происходит лучистый теплообмен, или теплопередача посредством теплового излучения.
Из этого факта вытекает, что энергией в форме излучения обмениваются практически все окружающие нас тела. Этот процесс также приводит к выравниванию температур тел, участвующих в теплообмене.
Согласно теории равновесного теплового излучения интенсивность $$ I$$ излучения так называемого абсолютно чёрного тела пропорциональна четвёртой степени абсолютной температуры $$ T$$ тела:
$$I=sigma ·{T}^{4}$$ — (закон Стефана—Больцмана). | (10) |
Где `sigma=5,67*10^(-8)` `»Вт»//»м»^2«»К»^4` — постоянная Стефана-Больцмана.
(Подробно речь об этом пойдёт в разделе «Основы квантовой физики» в 11 классе.)
В замкнутой системе теплообмен должен привести к установлению теплового равновесия. Теперь понятию «замкнутой системы» можно придать более отчётливые очертания: если границы некоторой области пространства имеют очень малый коэффициент теплопроводности (граница – слой теплоизолятора) и теплопередача через него не проходит, то содержащаяся внутри области пространства энергия изменяться не может и будет сохраняться.
2. Работа и изменение внутренней энергии.
Работа газа при расширении и сжатии
Для изменения внутренней энергии тела необходимо изменить кинетическую или потенциальную энергию его молекул. Этого можно добиться, не только при теплопередаче, но и деформируя тело. При упругой деформации изменяется расположение молекул или атомов внутри тела, приводящее к изменению сил взаимодействия (а значит, и потенциальной энергии взаимодействия), а при неупругой изменяются и амплитуды колебаний молекул или атомов, что изменяет кинетическую энергию молекул или атомов.
При ударе молотком по свинцовой пластине молоток заметно деформирует поверхность свинца (рис. 5). Атомы поверхностных слоёв начинают двигаться быстрее, внутренняя энергия пластины увеличивается.
Стоя на улице в морозную погоду и потирая руки, мы совершаем работу, что также приводит к увеличению внутренней энергии. Если сила трения возникла из-за взаимодействия шероховатостей, то при прохождении одной шероховатости мимо другой возникают колебания частей тела. Энергия колебаний превращается в тепло. Тот же процесс происходит и при разрывах шероховатостей.
Если работу совершает газ, закрытый в цилиндре и поршень будет перемещаться из положения `1` в положение `2` (рис. 6), то работа равна
$$ {A}^{text{‘}}=F·l·cosalpha =left(pSright)l·1=pleft(Slright)=p Delta V.$$ | (11) |
Здесь $$ F$$ – сила, действующая на поршень со стороны газа,
- $$ p$$ – давление газа,
- $$ S$$ – площадь поверхности поршня,
$$ Delta V$$ – изменение объёма газа.
В некоторых случаях для расчёта работы газа в тепловом процессе удобно воспользоваться графическим методом. Суть его можно представить следующим образом. Допустим, что газ изобарно расширяется от начального объёма $$ {V}_{1}$$ до конечного объёма $$ {V}_{2}$$. На $$ pV$$ -диаграмме график процесса представляет собой отрезок прямой линии (см. рис. 7). Сравним полученное выражение для расчёта работы $$ {A}^{text{‘}}$$ газа (см. выше) с «площадью» заштрихованного прямоугольника под графиком изобары $$ {}^{«}S{ }^{«}=p({V}_{2}-{V}_{1})$$.
Нетрудно убедиться, что $$ {}^{«}S{ }^{«}={A}^{text{‘}}$$, т. е. работа газа при расширении от объёма $$ {V}_{1}$$ до объёма $$ {V}_{2}$$ численно равна площади прямоугольника под графиком процесса на этом участке зависимости.
Если же процесс является более сложным (см. рис. 8), то и в этом случае графически работу можно найти как площадь фигуры под графиком процесса `1–2`.
Докажем это, рассмотрев переход газа из состояния 1 в состояние 2 не по кривой, а по ломаной, состоящей из $$ N$$ отрезков изохор и изобар. Работа на $$ i$$-ой изобаре (на рисунке $$ i=5$$) равна $$ {A}_{i}={p}_{i}·Delta {V}_{i}$$. Суммируя площади под всеми изобарами, получим площадь фигуры под ломаной, которую можно приближённо считать равной работе газа при расширении:
$$ A={p}_{1}·Delta {V}_{1}+{p}_{2}· Delta {V}_{2}+…+{p}_{N}· Delta {V}_{N}$$.
Эту работу можно вычислить точнее, если увеличить число изобар и изохор ломаной (увеличить $$ N$$ и уменьшить $$ Delta {V}_{i}$$). Площадь под ломаной при этом возрастёт,
так как к площади заштрихованной фигуры добавятся новые площади. Если число изобар и изохор устремить к бесконечности так, чтобы длина отрезков любой изобары и изохоры неограниченно уменьшалась, то ломаная линия совпадёт с кривой. Это и доказывает утверждение о том, что графически работу газа можно вычислить, найдя площадь фигуры под графиком процесса. Аналогично подсчитывают работу газа при его сжатии (уменьшении объёма). Необходимо только помнить, что работа газа в этом случае отрицательна.
При разбиении фигуры, образованной графиком процесса, изохорами и осью объёмов, на бесконечно малые элементы, изменение объёма записывается как $$ dV$$ (рис. 9). В этом случае малый элемент общей работы (элементарную работу) можно найти как $$ dA=p·dV$$, а всю работу получим суммированием всех элементарных работ на участке расширения:
$$ A=int dA=underset{{V}_{0}}{overset{{V}_{k}}{int }}pdV$$ — работа газа.
Работа газа численно равна площади фигуры под графиком $$ pleft(Vright)$$.
Если идеальный газ находится в теплоизолированном сосуде (стенки сосуда не пропускают тепло), то работа внешней силы, совершённая над ним, равна изменению кинетически энергий молекул газа, т. е. равна изменению его внутренней энергии:
$$∆U=A$$
В рамках молекулярно-кинетической теории этот факт можно пояснить следующим образом. При столкновении молекулы с движущимся навстречу ей массивным поршнем перпендикулярная к поршню составляющая скорости молекулы увеличится на удвоенную скорость поршня.
Содержание
- Какими двумя способами можно изменить внутреннюю энергию тела кратко
- Способы изменения внутренней энергии тела
- Содержание
- Совершение работы над телом
- Совершение работы самим телом
- Теплопередача
- Способы изменения внутренней энергии тела
Какими двумя способами можно изменить внутреннюю энергию тела кратко
Внутреннюю энергию тела можно изменить:
1) теплопередачей (теплопроводностью, конвекцией и излучением);
2) совершением механической работы над телом (трение, удар, сжатие и др.).
Энергия тела, которую оно получает или отдаёт при обмене теплом с другими телами (без совершения работы), называют количеством теплоты.
$$ = Delta U$$ — количество теплоты. |
(8) |
Рассмотрим эти процессы более подробно.
1. Виды теплопередачи
А)
явление передачи теплоты (энергии) от одной части тела (более нагретой) к другой (менее нагретой).
Передача теплоты осуществляется в основном за счёт колебательного движения и столкновения отдельных молекул. При этом при столкновениях некоторая доля кинетической энергии молекул от одной (более нагретой) части тела передаётся молекулам другой (менее нагретой) его части. Важно заметить, что при теплопроводности само вещество не перемещается, а теплопередача всегда идёт в определённом направлении: внутренняя энергия горячего тела уменьшается, а внутренняя энергия холодного тела увеличивается.
В твёрдых металлических телах теплопроводность осуществляется преимущественно за счёт движущихся особым образом свободных электронов (в металлах также осуществляется перенос тепла колеблющимися атомами, но их вклад сравнительно небольшой).
Благодаря непрерывному взаимодействию соседствующих молекул, теплопроводность в твёрдых телах и жидкостях происходит заметно быстрее, чем в газах.
Интенсивность теплопроводности между телами зависит от разности их температур, площади поверхности, через которую происходит теплопередача, а также от свойств вещества, расположенного между телами.
В обычных условиях для расчёта количества теплоты `Q`, передаваемого через слой вещества путём теплопроводности, пользуются следующим соотношением:
Здесь | $$ k$$ – коэффициент теплопроводности вещества слоя, |
$$ S$$ – площадь поверхности, через которую происходит теплопередача (см. рис 3), | |
$$ h$$ – толщина слоя вещества, | |
$$ t$$ – время наблюдения, | |
$$ Delta T=_<1>—_ <2>$$ — разность температур между границами слоя $$ (_<1>>_<2>)$$. |
Например, тепловая энергия уходит из комнаты через стену на улицу.
$$ S$$ – площадь поверхности стены,
- $$ h$$ – толщина слоя вещества, составляющего стену.
- $$ Delta T$$ – разность температур между комнатой $$ left(_<1>right)$$ и улицей $$ left(_<2>right)$$;
$$ k$$ – коэффициент теплопроводности вещества стены.
Следует отметить, что значения коэффициентов теплопроводности различных веществ отличаются столь сильно, что некоторые вещества применяют как эффективные теплопроводники (металлы, термомастика), а другие, наоборот, как теплоизоляторы (кирпич, дерево, пенопласт).
Б) В поле силы тяжести ещё одним механизмом теплопередачи может служить конвекция.
называют процесс перемешивания вещества, осуществляемый силой Архимеда, вследствии разности температур.
Конвекция может быть обнаружена в газах, жидкостях или сыпучих материалах.
Например, в кастрюле (см. рисунок 4) нагреваемая снизу вода расширяется, плотность её уменьшается. Сила Архимеда, действующая на небольшой фрагмент прогретой воды, поднимает её вверх. На поверхности прогретая вода остывает, смешиваясь с более холодной водой, испаряясь и т. п. Вследствие чего вода сжимается, становится более плотной, и тонет. Возникает конвективная ячейка.
На практике часто встречается принудительная конвекция, осуществляемая насосами или специальными перемешивающими механизмами.
В) Все тела, температура которых отлична от абсолютного нуля, излучают электромагнитные волны, которые переносят энергию. При комнатной температуре это в основном инфракрасное излучение. Так происходит лучистый теплообмен, или теплопередача посредством теплового излучения.
Из этого факта вытекает, что энергией в форме излучения обмениваются практически все окружающие нас тела. Этот процесс также приводит к выравниванию температур тел, участвующих в теплообмене.
Согласно теории равновесного теплового излучения интенсивность $$ I$$ излучения так называемого абсолютно чёрного тела пропорциональна четвёртой степени абсолютной температуры $$ T$$ тела:
$$I=sigma ·^<4>$$ — (закон Стефана—Больцмана). | (10) |
Где `sigma=5,67*10^(-8)` `»Вт»//»м»^2«»К»^4` — постоянная Стефана-Больцмана.
(Подробно речь об этом пойдёт в разделе «Основы квантовой физики» в 11 классе.)
В замкнутой системе теплообмен должен привести к установлению теплового равновесия. Теперь понятию «замкнутой системы» можно придать более отчётливые очертания: если границы некоторой области пространства имеют очень малый коэффициент теплопроводности (граница – слой теплоизолятора) и теплопередача через него не проходит, то содержащаяся внутри области пространства энергия изменяться не может и будет сохраняться.
2. Работа и изменение внутренней энергии.
Работа газа при расширении и сжатии
Для изменения внутренней энергии тела необходимо изменить кинетическую или потенциальную энергию его молекул. Этого можно добиться, не только при теплопередаче, но и деформируя тело. При упругой деформации изменяется расположение молекул или атомов внутри тела, приводящее к изменению сил взаимодействия (а значит, и потенциальной энергии взаимодействия), а при неупругой изменяются и амплитуды колебаний молекул или атомов, что изменяет кинетическую энергию молекул или атомов.
При ударе молотком по свинцовой пластине молоток заметно деформирует поверхность свинца (рис. 5). Атомы поверхностных слоёв начинают двигаться быстрее, внутренняя энергия пластины увеличивается.
Стоя на улице в морозную погоду и потирая руки, мы совершаем работу, что также приводит к увеличению внутренней энергии. Если сила трения возникла из-за взаимодействия шероховатостей, то при прохождении одной шероховатости мимо другой возникают колебания частей тела. Энергия колебаний превращается в тепло. Тот же процесс происходит и при разрывах шероховатостей.
Если работу совершает газ, закрытый в цилиндре и поршень будет перемещаться из положения `1` в положение `2` (рис. 6), то работа равна
Здесь $$ F$$ – сила, действующая на поршень со стороны газа,
- $$ p$$ – давление газа,
- $$ S$$ – площадь поверхности поршня,
$$ Delta V$$ – изменение объёма газа.
В некоторых случаях для расчёта работы газа в тепловом процессе удобно воспользоваться графическим методом . Суть его можно представить следующим образом. Допустим, что газ изобарно расширяется от начального объёма $$ _<1>$$ до конечного объёма $$ _<2>$$. На $$ pV$$ -диаграмме график процесса представляет собой отрезок прямой линии (см. рис. 7). Сравним полученное выражение для расчёта работы $$ ^<text<‘>>$$ газа (см. выше) с «площадью» заштрихованного прямоугольника под графиком изобары $$ <>^<«>S< >^<«>=p(_<2>—_<1>)$$.
Нетрудно убедиться, что $$ <>^<«>S< >^<«>=^<text<‘>>$$, т. е. работа газа при расширении от объёма $$ _<1>$$ до объёма $$ _<2>$$ численно равна площади прямоугольника под графиком процесса на этом участке зависимости.
Если же процесс является более сложным (см. рис. 8), то и в этом случае графически работу можно найти как площадь фигуры под графиком процесса `1–2`.
Докажем это, рассмотрев переход газа из состояния 1 в состояние 2 не по кривой, а по ломаной, состоящей из $$ N$$ отрезков изохор и изобар. Работа на $$ i$$-ой изобаре (на рисунке $$ i=5$$) равна $$ _=
_·Delta _$$. Суммируя площади под всеми изобарами, получим площадь фигуры под ломаной, которую можно приближённо считать равной работе газа при расширении:
Эту работу можно вычислить точнее, если увеличить число изобар и изохор ломаной (увеличить $$ N$$ и уменьшить $$ Delta _$$). Площадь под ломаной при этом возрастёт,
так как к площади заштрихованной фигуры добавятся новые площади. Если число изобар и изохор устремить к бесконечности так, чтобы длина отрезков любой изобары и изохоры неограниченно уменьшалась, то ломаная линия совпадёт с кривой. Это и доказывает утверждение о том, что графически работу газа можно вычислить, найдя площадь фигуры под графиком процесса. Аналогично подсчитывают работу газа при его сжатии (уменьшении объёма). Необходимо только помнить, что работа газа в этом случае отрицательна.
При разбиении фигуры, образованной графиком процесса, изохорами и осью объёмов, на бесконечно малые элементы, изменение объёма записывается как $$ dV$$ (рис. 9). В этом случае малый элемент общей работы (элементарную работу) можно найти как $$ dA=p·dV$$, а всю работу получим суммированием всех элементарных работ на участке расширения:
Работа газа численно равна площади фигуры под графиком $$ pleft(Vright)$$.
Если идеальный газ находится в теплоизолированном сосуде (стенки сосуда не пропускают тепло), то работа внешней силы, совершённая над ним, равна изменению кинетически энергий молекул газа, т. е. равна изменению его внутренней энергии:
В рамках молекулярно-кинетической теории этот факт можно пояснить следующим образом. При столкновении молекулы с движущимся навстречу ей массивным поршнем перпендикулярная к поршню составляющая скорости молекулы увеличится на удвоенную скорость поршня.
Источник
Способы изменения внутренней энергии тела
Содержание
Вы уже знаете, что механическая энергия тела (кинетическая и потенциальная) может изменяться. Внутренняя энергия тела также не является постоянной величиной, она может менять свое значение. Внутренняя энергия зависит от температуры: при ее повышении внутренняя энергия увеличивается. Происходит это за счет увеличения средней скорости движения молекул и возрастания их кинетической энергии. При понижении температуры внутренняя энергия, наоборот, понижается. Значит, внутренняя энергия тела меняется при изменении скорости движения молекул.
В данном уроке мы выясним, каким способом можно изменить скорость движения молекул. Таким образом, мы определим, при каких условиях происходит изменение внутренней энергии и дадим определения новым понятиям.
Совершение работы над телом
Рассмотрим опыт, представленный на рисунке 1.
У нас есть металлическая трубка, закрепленная на подставке. Наливаем в трубку немного эфира (бесцветная летучая жидкость, употребляется в технике и медицине для дезинфекции, имеет температуру кипения около $35 degree C$). Закрываем пробкой. Обвиваем вокруг трубки веревку, и начинаем быстро двигать ее в разные стороны. Что произойдет?
После некоторого времени наших манипуляций с веревкой, эфир закипит. Его пар вытолкнет пробку.
Такой способ используется при разведении огня в диких условиях. Древние люди обладали им в совершенстве. При вращении сухой кусок дерева нагревался более чем на $250 degree C$ и загорался.
Внутренняя энергия эфира изменилась – она увеличилась. Он не только нагрелся, но и закипел. Натирая трубку веревкой, мы совершали механическую работу.
Также тела нагреваются при деформациях: ударах (вспомните опыт из прошлого урока с шаром из свинца), разгибании, сгибании (можно провести простой опыт, сгибая медную проволоку) и др.
Внутреннюю энергию тела можно увеличить, совершая над телом работу.
Когда нам холодно, мы начинаем дрожать – происходят мышечные сокращения. Таким образом наш организм увеличивает температуру тела – за счет работы мышц увеличивается внутренняя энергия.
Совершение работы самим телом
Рассмотрим опыт, представленный на рисунке 2.
У нас имеется стеклянный сосуд, который закрывается пробкой. В пробке есть специальное отверстие. Через него с помощью насоса начнем закачивать в сосуд воздух.
Через некоторое время пробка вылетит. В этот момент можно заметить как образуется туман. Это означает, что воздух в сосуде стал холоднее.
Вытолкнув пробку, сжатый воздух в сосуде совершил работу. Т. к. температура воздуха понизилась, мы можем сказать, что его внутренняя энергия тоже уменьшилась.
Если работу совершает само тело, то его его внутренняя энергия уменьшается.
Внутреннюю энергию тела можно изменить путем совершения работы.
Теплопередача
Можно ли изменить внутреннюю энергию тела без совершения работы?
Мы часто наблюдаем ситуации, когда увеличивается температура тела. Например, закипание воды в чайнике, воздух нагревается от батарей отопления в квартире, нагреваются предметы, оставленные на солнце. Работа во всех этих примерах не совершается.
Попробуем объяснить увеличение внутренней энергии в таких случаях на следующем примере. Опустим обычную металлическую ложку в стакан с горячей водой (рисунок 3).
Что будет происходить?
- Температура горячей воды намного больше температуры холодной ложки. Значит, кинетическая энергия молекул воды больше кинетической энергии частиц металлической ложки
- Молекулы воды начинают взаимодействовать с частицами металла – передают им часть своей кинетической энергии
- Энергия молекул воды уменьшается, энергия частиц металла увеличивается
- Температура воды уменьшается, температура ложки увеличивается
- Вскоре им температуры выравниваются
Внутреннюю энергию тела можно изменить путем теплопередачи.
Теплопередача – это процесс изменения внутренней энергии без совершения работы самими телом или над ним.
- Теплопередача происходит между телами с разной температурой
- Теплопередача идет в направлении от тел с более высокой температурой к телам с более низкой
- Теплопередача заканчивается, когда температуры тел выравниваются (становятся равны друг другу)
В мороз многие водоплавающие птицы (например, утки) охотно залезают в воду. В такую погоду температура воды выше температуры воздуха, что позволяет птицам не замерзать.
Способы изменения внутренней энергии тела
внутреннюю энергию можно изменить двумя способами: совершая механическую работу или теплопередачей.
Существует три вида теплопередачи:
Виды теплопередачи будут изучены нами в следующих уроках.
Источник