Как можно изменить атмосферное давление

Материал из раздела внеурочная деятельность (конкурсные работы) от 10.07.2017 – Атмосферное давление доступен для бесплатного просмотра и скачивания с сайта.

Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Вертушкин Иван Александрович
  • Руководитель: Виноградова Елена Анатольевна  

         Тема : «Атмосферное давление»

Введение

Сегодня за окном идёт дождь. После дождя уменьшилась температура воздуха, увеличилась влажность и уменьшилось атмосферное давление. Атмосферное давление является одним из основных факторов, определяющих состояние погоды и климата, поэтому знания об атмосферном давлении необходимы в прогнозировании погоды. Большое практическое значение имеет умение измерять атмосферное давление. И его можно измерить специальными приборами-барометрами. В жидкостных барометрах при изменении погоды столбик жидкости понижается или повышается.

Знания об атмосферном давлении необходимы в медицине, в технологических процессах, жизнедеятельности человека и всех живых организмов. Существует прямая связь между изменениями атмосферного давления и изменениями погоды. Рост или понижение атмосферного давления может служить признаком изменения погоды и влияет на самочувствие человека. 

Описание трёх взаимосвязанных физических явлений из повседневной жизни:

  • Связь между погодой и атмосферным давлением.
  • Явления, лежащие в основе работы приборов для измерения атмосферного давления.
  • Зависимость давления жидкости от высоты столба жидкости в жидкостных барометрах.

Актуальность работы

Актуальность выбранной темы состоит в том, что во все времена люди, благодаря своим наблюдениям за поведением животных могли предугадать изменения погоды, стихийные бедствия, избежать людских жертв.

Влияние атмосферного давления на наш организм неизбежно, резкие изменения атмосферного давления влияют на самочувствие человека, особенно страдают метеозависимые люди. Конечно, уменьшить влияние атмосферного давления на здоровье человека мы не в силах, но помочь собственному организму можем. Правильно организовать свой день, распределить время между трудом и отдыхом может помочь умение измерять атмосферное давление, знание народных примет, использование самодельных приборов.

Цель работы: выяснить, какую роль в повседневной жизни человека играет атмосферное давление.

Задачи:

  • Изучить историю измерения атмосферного давления.
  • Установить, есть ли связь между погодой и атмосферным давлением.
  • Изучить виды приборов, предназначенных для измерения атмосферного давления, изготовленных человеком.
  • Изучить физические явления, лежащие в основе работы приборов для измерения атмосферного давления.
  • Зависимость давления жидкости от высоты столба жидкости в жидкостных барометрах.

Методы исследования

  • Анализ литературы.
  • Обобщение полученной информации.
  • Наблюдения.

Область исследования: атмосферное давление

Гипотеза: атмосферное давления имеет важное значение для человека.

Значимость работы: материал данной работы может быть использован на уроках и во внеурочной деятельности, в жизни моих одноклассников, учеников нашей школы, всеми любителями исследований природы.

План работы

I. Теоретическая часть (сбор информации):

  1. Обзор и анализ литературы.
  2. Интернет-ресурсы.

II. Практическая часть:

  • наблюдения;
  • сбор информации о погоде.

III. Заключительная часть:

  1. Выводы.
  2. Презентация работы.

История измерения атмосферного давления

Мы живем на дне огромного воздушного океана, называемого атмосферой. Все изменения, которые происходят в атмосфере, непременно оказывают влияние на человека, на его здоровье, способы жизнедеятельности, т.к. человек является неотъемлемой частью природы. Каждый из факторов, определяющих погоду: атмосферное давление, температура, влажность, содержание в воздухе озона и кислорода, радиоактивность, магнитные бури и др. оказывает прямое или косвенное воздействие на самочувствие и здоровье человека. Остановимся на атмосферном давлении.

Атмосферное давление — это давление атмосферы на все находящиеся в ней предметы и Земную поверхность.

В 1640 году великий герцог Тосканский решил устроить фонтан на террасе своего дворца и приказал для этого подвести воду из ближайшего озера с использованием всасывающего насоса. Приглашенные флорентийские мастера сказали, что это невозможно, потому что воду нужно было всасывать на высоту более 32 футов (более 10 метров). А почему вода не всасывается на такую высоту, объяснить не могли. Герцог попросил разобраться великого ученого Италии Галилео Галилея. Хотя ученый уже был стар и болен и не мог заняться экспериментами, он все-таки предположил, что решение вопроса лежит в области определения веса воздуха и его давления на водную поверхность озера. За разрешение этого вопроса взялся ученик Галилея Эванджелиста Торричелли. Для проверки гипотезы своего учителя он провел свой знаменитый опыт. Стеклянную трубку длиной 1 м, запаянную с одного конца, заполнил полностью ртутью, и плотно закрыв открытый конец трубки, перевернул ее этим концом в чашку с ртутью. Часть ртути из трубки вылилась, часть осталась. Над ртутью образовалось безвоздушное пространство. Атмосфера давит на ртуть в чашке, ртуть в трубке тоже давит на ртуть в чашке, так как установилось равновесие, то эти давления равны. Рассчитать давление ртути в трубке означает рассчитать давление атмосферы. Если атмосферное давление повышается или понижается, то столбик ртути в трубке соответственно повышается или понижается. Так появилась единица измерения атмосферного давления – мм. рт. ст. – миллиметр ртутного столба. Наблюдая за уровнем ртути в трубке, Торричелли заметил, что уровень меняется, значит, он не является постоянным и зависит от изменения погоды. Если давление повышается, погода будет хорошей: холодной – зимой, жаркой – летом. Если давление резко понижается, значит, ожидается появление облачности и насыщение влагой воздуха. Трубка Торричелли с приставленной линейкой представляет собой первый прибор для измерения атмосферного давления – ртутный барометр. (Приложение 1)

Ртутный барометр

Ртутный барометр

Создавали барометры и другие ученые: Роберт Гук, Роберт Бойль, Эмиль Марриот. Водяные барометры сконструировал французский ученый Блез Паскаль и немецкий бургомистр города Магдебурга Отто фон Герике. Высота такого барометра составляла более 10 метров.

Для измерения давления пользуются различными единицами: мм ртутного столба, физическими атмосферами, в системе СИ – Паскалями.

Связь между погодой и атмосферным давлением

В романе Жюль Верна «Пятнадцатилетний капитан» заинтересовало описание о том, как понимать показания барометра.

«Капитан Гуль, хороший метеоролог, научил его понимать показания барометра. Мы вкратце расскажем, как надо пользоваться этим замечательным прибором.

  1. Когда после долгого периода хорошей погоды барометр начинает резко и непрерывно падать это верный признак дождя. Однако если хорошая погода стояла очень долго, то ртутный столбик может опускаться два-три дня, и лишь после этого произойдут в атмосфере сколько-нибудь заметные изменения. В таких случаях чем больше времени прошло между началом падения ртутного столба и началом дождей, тем дольше будет стоять дождливая погода.
  2. Напротив, если во время долгого периода дождей барометр начнет медленно, но непрерывно подниматься, можно с уверенностью предсказать наступление хорошей погоды. И хорошая погода удержится тем дольше, чем больше времени прошло между началом подъема ртутного столба и первым ясным днем.
  3. В обоих случаях изменение погоды, происшедшее сразу после подъема или падения ртутного столба, удерживается весьма непродолжительное время.
  4. Если барометр медленно, но беспрерывно поднимается в течение двух-трех дней и дольше, это предвещает хорошую погоду, хотя бы все эти дни и лил, не переставая, дождь, и vice versa. Но если барометр медленно поднимается в дождливые дни, а с наступлением хорошей погоды тотчас же начинает падать, хорошая погода удержится очень недолго, и vice versa
  5. Весной и осенью резкое падение барометра предвещает ветреную погоду. Летом, в сильную жару, оно предсказывает грозу. Зимой, особенно после продолжительных морозов, быстрое падение ртутного столба говорит о предстоящей перемене направления ветра, сопровождающейся оттепелью и дождем. Напротив, повышение ртутного стол ба во время продолжительных морозов предвещает снегопад.
  6. Частые колебания уровня ртутного столба, то поднимающегося, то падающего, ни в коем случае не следует рассматривать как признак приближения длительного; периода сухой либо дождливой погоды. Только постепенное и медленное падение или повышение ртутного столба предвещает наступление долгого периода устойчивой погоды.
  7. Когда в конце осени, после долгого периода ветров и дождей, барометр начинает подниматься, это предвещает северный ветер в наступление морозов.

Вот общие выводы, которые можно сделать из показаний этого ценного прибора. Дик Сэнд отлично умел разбираться в предсказаниях барометра и много раз убеждался, насколько они правильны. Каждый день он советовался со своим барометром, чтобы не быть застигнутым врасплох переменой погоды.»

Я провел наблюдения за изменением погоды и атмосферным давлением. И убедился, что существует эта зависимость.

Дата

Температура, °С

Осадки,

Атмосферное давление, мм рт.ст.

Облачность

28.01.2017

-3

765

ясно

29.01.2017

-6

761

пасмурно

30.01.2017

-4

767

ясно

31.01.2017

-5

763,5

пасмурно

01.02.2017

-6

751

пасмурно

02.02.2017

-12

758

пасмурно

03.02.2017

-12

753

пасмурно

04.02.2017

-5

754

ясно

05.02.2017

-16

755

ясно

06.02.2017

-23

764

ясно

07.02.2017

-21

769

ясно

08.02.2017

-15

765

пасмурно

09.02.2017

0

768

ясно

10.02.2017

0

764

пасмурно

Приборы для измерения атмосферного давления

Для научных и житейских целей нужно уметь измерять атмосферное давление. Для этого существуют специальные приборы – барометры. Нормальным атмосферным давлением называют давление на уровне моря при температуре 15 °C. Оно равно 760 мм рт. ст. Нам известно, что при изменении высоты на 12 метров атмосферное давление изменяется на 1 мм рт. ст. Причём, при увеличении высоты атмосферное давление понижается, а при уменьшении – повышается.

Современный барометр сделан безжидкостным. Он называется барометр-анероид. Металлические барометры менее точны, но не столь громоздки и хрупки.

Барометр-анероид – очень чувствительный прибор. Например, поднимаясь на последний этаж девятиэтажного дома, из-за различия атмосферного давления на различной высоте мы обнаружим уменьшение атмосферного давления на 2-3 мм рт. ст.

Барометр-анероид

Барометр может служить для определения высоты полета самолета. Такой барометр называется барометрический высотомер или альтиметр. Идея опыта Паскаля легла в основу конструкции альтиметра. Он определяет высоту подъема над уровнем моря по изменению атмосферного давления.

При наблюдении погоды в метеорологии, если необходимо зарегистрировать колебания атмосферного давления в течение некоторого промежутка времени, пользуются самопишущим прибором – барографом.

Барограф

Штормгласс (Storm Glass) (штормглас, нидерл. storm — «буря» и glass — «стекло»)— это химический или кристаллический барометр, состоящий из стеклянной колбы или ампулы, заполненных спиртовым раствором, в котором в определённых пропорциях растворены камфора, нашатырь и калийная селитра.

Штормгласс

Этим химическим барометром активно пользовался во время своих морских путешествий английский гидрограф и метеоролог, вице-адмирал Роберт Фицрой, который тщательно описал поведение барометра, это описание используется до сих пор. Поэтому, штормгласс также называют «Барометром Фицроя». В 1831–36 Фицрой возглавлял океанографическую экспедицию на корабле «Бигл», в которой участвовал Чарльз Дарвин.

Барометр работает следующим образом. Колба герметически запаяна, но, тем не менее, в ней постоянно происходит рождение и исчезновение кристаллов. В зависимости от грядущих изменений погоды, в жидкости образуются кристаллы различной формы. Штормгласс настолько чувствителен, что может предсказывать резкое изменение погоды за 10 минут до такового. Принцип работы так и не получил полного научного объяснения. Барометр лучше работает находясь у окна, особенно в железобетонных домах, вероятно в этом случае барометр не так сильно экранируется.

Фото 1

Бароскоп – прибор для наблюдения за изменением атмосферного давления. Можно сделать бароскоп своими руками. Для изготовления бароскопа требуется следующее оборудование: Стеклянная банка объемом 0,5 литра.

Фото 2

  1. Кусок пленки от воздушного шарика.
  2. Резиновое кольцо.
  3. Легкая стрелка из соломы.
  4. Проволока для крепления стрелки.
  5. Вертикальная шкала.
  6. Корпус прибора.

Зависимость давления жидкости от высоты столба жидкости в жидкостных барометрах

При изменении атмосферного давления в жидкостных барометрах изменяется высота столба жидкости (воды или ртути): при уменьшении давления – уменьшается, при увеличении увеличивается. Значит, существует зависимость высоты столба жидкости от атмосферного давления. Но и сама жидкость давит на дно и стенки сосуда.

Французский ученый Б. Паскаль в середине XVII века эмпирически установил закон, названный законом Паскаля:

Давление в жидкости или газе передается во всех направлениях одинаково и не зависит от ориентации площадки, на которую оно действует.

Для иллюстрации закона Паскаля на рисунке изображена небольшая прямоугольная призма, погруженная в жидкость. Если предположить, что плотность материала призмы равна плотности жидкости, то призма должна находиться в жидкости в состоянии безразличного равновесия. Это означает, что силы давления, действующие на грани призмы, должны быть уравновешены. Это произойдет только в том случае, если давления, т. е. силы, действующие на единицу площади поверхности каждой грани, одинаковы: p1 = p2 = p3 = p.

Рисунок

Давление жидкости на дно или боковые стенки сосуда зависит от высоты столба жидкости. Сила давления на дно цилиндрического сосуда высоты h и площади основания S равна весу столба жидкости mg, где m = ρghS – масса жидкости в сосуде, ρ – плотность жидкости. Следовательно p = ρghS S

Такое же давление на глубине h в соответствии с законом Паскаля жидкость оказывает и на боковые стенки сосуда. Давление столба жидкости ρgh называют гидростатическим давлением.

Во многих устройствах, встречающихся нам в жизни, используются законы давления жидкости и газов: сообщающиеся сосуды, водопровод, гидравлический пресс, шлюзы, фонтаны, артезианский колодец и т.д.

Заключение

Измеряют атмосферное давление для того, чтобы с большей вероятностью предсказать возможное изменение погоды. Существует прямая связь между изменениями давления и изменениями погоды. Рост или понижение атмосферного давления с некоторой вероятностью может служить признаком изменения погоды. Надо знать: если давление падает, то ожидается пасмурная, дождливая погода, если же повышается — сухая погода, с похолоданием зимой. Если давление падает очень резко – возможна серьёзная непогода: шторм, сильная гроза или буря.

Еще в древности врачи писали о влиянии погоды на организм человека. В тибетской медицине есть упоминание: «боли в суставах усиливаются в дождливое время и в период больших ветров». Знаменитый алхимик, врач Парацельс отмечал: «Тому, кто изучил ветры, молнию и погоду, известно происхождение болезней».

Для того, чтобы человеку было комфортно, атмосферное давление должно быть равно 760 мм. рт. ст. Если атмосферное давление отклоняется, хоть на 10 мм, в ту или иную сторону, человек чувствует себя не комфортно и это может сказаться на его состоянии здоровья. Неблагоприятные явления наблюдаются в период изменения атмосферного давления — повышения (компрессии) и особенно его снижения (декомпрессии) до нормального. Чем медленнее происходит изменение давления, тем лучше и без неблагоприятных последствий приспосабливается к нему организм человека.

From Wikipedia, the free encyclopedia

«Air pressure» redirects here. For the pressure of air in other systems, see Pressure.

Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1013.25 millibars,[1] 760 mm Hg, 29.9212 inches Hg, or 14.696 psi.[2] The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth’s atmospheric pressure at sea level is approximately 1 atm.

In most circumstances, atmospheric pressure is closely approximated by the hydrostatic pressure caused by the weight of air above the measurement point. As elevation increases, there is less overlying atmospheric mass, so atmospheric pressure decreases with increasing elevation. Because the atmosphere is thin relative to the Earth’s radius—especially the dense atmospheric layer at low altitudes—the Earth’s gravitational acceleration as a function of altitude can be approximated as constant and contributes little to this fall-off. Pressure measures force per unit area, with SI units of pascals (1 pascal = 1 newton per square metre, 1 N/m2). On average, a column of air with a cross-sectional area of 1 square centimetre (cm2), measured from the mean (average) sea level to the top of Earth’s atmosphere, has a mass of about 1.03 kilogram and exerts a force or «weight» of about 10.1 newtons, resulting in a pressure of 10.1 N/cm2 or 101 kN/m2 (101 kilopascals, kPa). A column of air with a cross-sectional area of 1 in2 would have a weight of about 14.7 lbf, resulting in a pressure of 14.7 lbf/in2.

Mechanism[edit]

Atmospheric pressure is caused by the gravitational attraction of the planet on the atmospheric gases above the surface and is a function of the mass of the planet, the radius of the surface, and the amount and composition of the gases and their vertical distribution in the atmosphere.[3][4] It is modified by the planetary rotation and local effects such as wind velocity, density variations due to temperature and variations in composition.[5]

Mean sea-level pressure[edit]

Map showing atmospheric pressure in mbar or hPa

15-year average mean sea-level pressure for June, July, and August (top) and December, January, and February (bottom). ERA-15 re-analysis.

The mean sea-level pressure (MSLP) is the atmospheric pressure at mean sea level (PMSL). This is the atmospheric pressure normally given in weather reports on radio, television, and newspapers or on the Internet. When barometers in the home are set to match the local weather reports, they display pressure adjusted to sea level, not the actual local atmospheric pressure.

The altimeter setting in aviation is an atmospheric pressure adjustment.

Average sea-level pressure is 1013.25 hPa (29.921 inHg; 760.00 mmHg). In aviation weather reports (METAR), QNH is transmitted around the world in hectopascals or millibars (1 hectopascal = 1 millibar), except in the United States, Canada, and Japan where it is reported in inches of mercury (to two decimal places). The United States and Canada also report sea-level pressure SLP, which is adjusted to sea level by a different method, in the remarks section, not in the internationally transmitted part of the code, in hectopascals or millibars.[6] However, in Canada’s public weather reports, sea level pressure is instead reported in kilopascals.[7]

In the US weather code remarks, three digits are all that are transmitted; decimal points and the one or two most significant digits are omitted: 1013.2 hPa (14.695 psi) is transmitted as 132; 1000 hPa (100 kPa) is transmitted as 000; 998.7 hPa is transmitted as 987; etc. The highest sea-level pressure on Earth occurs in Siberia, where the Siberian High often attains a sea-level pressure above 1050 hPa (15.2 psi; 31 inHg), with record highs close to 1085 hPa (15.74 psi; 32.0 inHg). The lowest measurable sea-level pressure is found at the centres of tropical cyclones and tornadoes, with a record low of 870 hPa (12.6 psi; 26 inHg).

Surface pressure [edit]

Surface pressure is the atmospheric pressure at a location on Earth’s surface (terrain and oceans). It is directly proportional to the mass of air over that location.

For numerical reasons, atmospheric models such as general circulation models (GCMs) usually predict the nondimensional logarithm of surface pressure.

The average value of surface pressure on Earth is 985 hPa.[8] This is in contrast to mean sea-level pressure, which involves the extrapolation of pressure to sea level for locations above or below sea level. The average pressure at mean sea level (MSL) in the International Standard Atmosphere (ISA) is 1013.25 hPa, or 1 atmosphere (atm), or 29.92 inches of mercury.

Pressure (P), mass (m), and acceleration due to gravity (g) are related by P = F/A = (m*g)/A, where A is the surface area. Atmospheric pressure is thus proportional to the weight per unit area of the atmospheric mass above that location.

Altitude variation[edit]

Variation in atmospheric pressure with altitude, computed for 15 °C and 0% relative humidity.

This plastic bottle was sealed at approximately 4,300 metres (14,000 ft) altitude, and was crushed by the increase in atmospheric pressure, recorded at 2,700 metres (9,000 ft) and 300 metres (1,000 ft), as it was brought down towards sea level.

Pressure on Earth varies with the altitude of the surface, so air pressure on mountains is usually lower than air pressure at sea level. Pressure varies smoothly from the Earth’s surface to the top of the mesosphere. Although the pressure changes with the weather, NASA has averaged the conditions for all parts of the earth year-round. As altitude increases, atmospheric pressure decreases. One can calculate the atmospheric pressure at a given altitude.[9] Temperature and humidity also affect the atmospheric pressure. Pressure is proportional to temperature and inversely proportional to humidity. And it is necessary to know both of these to compute an accurate figure. The graph on the rightabove was developed for a temperature of 15 °C and a relative humidity of 0%.

At low altitudes above sea level, the pressure decreases by about 1.2 kPa (12 hPa) for every 100  metres. For higher altitudes within the troposphere, the following equation (the barometric formula) relates atmospheric pressure p to altitude h:
{displaystyle {begin{aligned}p&=p_{0}cdot left(1-{frac {Lcdot h}{T_{0}}}right)^{frac {gcdot M}{R_{0}cdot L}}\&=p_{0}cdot left(1-{frac {gcdot h}{c_{text{p}}cdot T_{0}}}right)^{frac {c_{text{p}}cdot M}{R_{0}}}approx p_{0}cdot exp left(-{frac {gcdot hcdot M}{T_{0}cdot R_{0}}}right)end{aligned}}}

. The values in these equations are:

Parameter Description Value
h Height above mean sea level  m
p0 Sea level standard atmospheric pressure 101325 Pa
L Temperature lapse rate, = g/cp for dry air ~ 0.00976 K/m
cp Constant-pressure specific heat 1004.68506 J/(kg·K)
T0 Sea level standard temperature 288.16 K
g Earth-surface gravitational acceleration 9.80665 m/s2
M Molar mass of dry air 0.02896968 kg/mol
R0 Universal gas constant 8.314462618 J/(mol·K)

Local variation[edit]

Hurricane Wilma on 19 October 2005. The pressure in the eye of the storm was 882 hPa (12.79 psi) at the time the image was taken.

Atmospheric pressure varies widely on Earth, and these changes are important in studying weather and climate. Atmospheric pressure shows a diurnal or semidiurnal (twice-daily) cycle caused by global atmospheric tides. This effect is strongest in tropical zones, with an amplitude of a few hectopascals, and almost zero in polar areas. These variations have two superimposed cycles, a circadian (24 h) cycle, and a semi-circadian (12 h) cycle.

Records[edit]

The highest adjusted-to-sea level barometric pressure ever recorded on Earth (above 750 meters) was 1084.8 hPa (32.03 inHg) measured in Tosontsengel, Mongolia on 19 December 2001.[10] The highest adjusted-to-sea level barometric pressure ever recorded (below 750 meters) was at Agata in Evenk Autonomous Okrug, Russia (66°53′ N, 93°28′ E, elevation: 261 m, 856 ft) on 31 December 1968 of 1083.8 hPa (32.005 inHg).[11] The discrimination is due to the problematic assumptions (assuming a standard lapse rate) associated with reduction of sea level from high elevations.[10]

The Dead Sea, the lowest place on Earth at 430 metres (1,410 ft) below sea level, has a correspondingly high typical atmospheric pressure of 1065 hPa.[12] A below-sea-level surface pressure record of 1081.8 hPa (31.95 inHg) was set on 21 February 1961.[13]

The lowest non-tornadic atmospheric pressure ever measured was 870 hPa (0.858  atm; 25.69 inHg), set on 12 October 1979, during Typhoon Tip in the western Pacific Ocean. The measurement was based on an instrumental observation made from a reconnaissance aircraft.[14]

Measurement based on the depth of water[edit]

One atmosphere (101.325 kPa or 14.7 psi) is also the pressure caused by the weight of a column of freshwater of approximately 10.3 m (33.8 ft). Thus, a diver 10.3 m underwater experiences a pressure of about 2 atmospheres (1 atm of air plus 1 atm of water). Conversely, 10.3 m is the maximum height to which water can be raised using suction under standard atmospheric conditions.

Low pressures, such as natural gas lines, are sometimes specified in inches of water, typically written as w.c. (water column) gauge or w.g. (inches water) gauge. A typical gas-using residential appliance in the US is rated for a maximum of 12 psi (3.4 kPa; 34 mbar), which is approximately 14 w.g. Similar metric units with a wide variety of names and notation based on millimetres, centimetres or metres are now less commonly used.

Boiling point of liquids[edit]

Pure water boils at 100 °C (212 °F) at earth’s standard atmospheric pressure. The boiling point is the temperature at which the vapour pressure is equal to the atmospheric pressure around the liquid.[15] Because of this, the boiling point of liquids is lower at lower pressure and higher at higher pressure. Cooking at high elevations, therefore, requires adjustments to recipes[16] or pressure cooking. A rough approximation of elevation can be obtained by measuring the temperature at which water boils; in the mid-19th century, this method was used by explorers.[17] Conversely, if one wishes to evaporate a liquid at a lower temperature, for example in distillation, the atmospheric pressure may be lowered by using a vacuum pump, as in a rotary evaporator.

Measurement and maps[edit]

An important application of the knowledge that atmospheric pressure varies directly with altitude was in determining the height of hills and mountains, thanks to reliable pressure measurement devices. In 1774, Maskelyne was confirming Newton’s theory of gravitation at and on Schiehallion mountain in Scotland, and he needed to measure elevations on the mountain’s sides accurately. William Roy, using barometric pressure, was able to confirm Maskelyne’s height determinations, the agreement being to be within one meter (3.28 feet). This method became and continues to be useful for survey work and map making.[18]

See also[edit]

  • Atmospheric density – Mass per unit volume of earths atmosphere
  • Atmosphere of Earth – Gas layer surrounding Earth
  • Barometric formula – Formula used to model how air pressure varies with altitude
  • Barotrauma – Injury caused by pressure – physical damage to body tissues caused by a difference in pressure between an air space inside or beside the body and the surrounding gas or liquid.
  • Cabin pressurization – Process to maintain internal air pressure in aircraft
  • Cavitation – Low-pressure voids formed in liquids
  • Collapsing can – an aluminium can is crushed by the atmospheric pressure surrounding it
  • Effects of high altitude on humans – Environmental effects on physiology
  • High-pressure area – In meteorology, an anticyclone
  • International Standard Atmosphere – Atmospheric model, a tabulation of typical variations of principal thermodynamic variables of the atmosphere (pressure, density, temperature, etc.) with altitude, at middle latitudes.
  • Low-pressure area – Area with air pressures lower than adjacent areas
  • Meteorology – Interdisciplinary scientific study of the atmosphere focusing on weather forecasting
  • NRLMSISE-00, an empirical, global reference atmospheric model of the Earth from ground to space
  • Plenum chamber – Chamber containing a fluid under pressure
  • Pressure – Force distributed over an area
  • Pressure measurement – Analysis of force applied by a fluid on a surface
  • Standard atmosphere (unit) – Unit of pressure defined as 101325 Pa
  • Horse latitudes – Latitudes 30–35 degrees north and south of the Equator

References[edit]

  1. ^ «Statement (2001)». BIPM. Retrieved 2022-03-19.
  2. ^ International Civil Aviation Organization. Manual of the ICAO Standard Atmosphere, Doc 7488-CD, Third Edition, 1993. ISBN 92-9194-004-6.
  3. ^ «atmospheric pressure (encyclopedic entry)». National Geographic. Archived from the original on 28 February 2018. Retrieved 28 February 2018.
  4. ^ «Q & A: Pressure – Gravity Matters?». Department of Physics. University of Illinois Urbana-Champaign. Archived from the original on 28 February 2018. Retrieved 28 February 2018.
  5. ^ Jacob, Daniel J. (1999). Introduction to Atmospheric Chemistry. Princeton University Press. ISBN 9780691001852. Archived from the original on 2021-10-01. Retrieved 2020-10-15.
  6. ^ Sample METAR of CYVR Archived 2019-05-25 at the Wayback Machine Nav Canada
  7. ^ Montreal Current Weather, CBC Montreal, Canada, archived from the original on 2014-03-30, retrieved 2014-03-30
  8. ^ Jacob, Daniel J. Introduction to Atmospheric Chemistry Archived 2020-07-25 at the Wayback Machine. Princeton University Press, 1999.
  9. ^ A quick derivation relating altitude to air pressure Archived 2011-09-28 at the Wayback Machine by Portland State Aerospace Society, 2004, accessed 05032011
  10. ^ a b World: Highest Sea Level Air Pressure Above 750 m, Wmo.asu.edu, 2001-12-19, archived from the original on 2012-10-17, retrieved 2013-04-15
  11. ^ World: Highest Sea Level Air Pressure Below 750 m, Wmo.asu.edu, 1968-12-31, archived from the original on 2013-05-14, retrieved 2013-04-15
  12. ^ Kramer, MR; Springer C; Berkman N; Glazer M; Bublil M; Bar-Yishay E; Godfrey S (March 1998). «Rehabilitation of hypoxemic patients with COPD at low altitude at the Dead Sea, the lowest place on earth» (PDF). Chest. 113 (3): 571–575. doi:10.1378/chest.113.3.571. PMID 9515826. Archived from the original (PDF) on 2013-10-29.
  13. ^ Court, Arnold (1969). «Improbable Pressure Extreme: 1070 Mb». Bulletin of the American Meteorological Society. 50 (4): 248–50. JSTOR 26252600.
  14. ^ Chris Landsea (2010-04-21). «Subject: E1), Which is the most intense tropical cyclone on record?». Atlantic Oceanographic and Meteorological Laboratory. Archived from the original on 6 December 2010. Retrieved 2010-11-23.
  15. ^ Vapour Pressure, Hyperphysics.phy-astr.gsu.edu, archived from the original on 2017-09-14, retrieved 2012-10-17
  16. ^ High Altitude Cooking, Crisco.com, 2010-09-30, archived from the original on 2012-09-07, retrieved 2012-10-17
  17. ^ Berberan-Santos, M. N.; Bodunov, E. N.; Pogliani, L. (1997). «On the barometric formula». American Journal of Physics. 65 (5): 404–412. Bibcode:1997AmJPh..65..404B. doi:10.1119/1.18555.
  18. ^ Hewitt, Rachel, Map of a Nation – a Biography of the Ordnance Survey ISBN 1-84708-098-7

External links[edit]

  • 1976 Standard Atmosphere from NASA
  • Source code and equations for the 1976 Standard Atmosphere
  • A mathematical model of the 1976 U.S. Standard Atmosphere
  • Calculator using multiple units and properties for the 1976 Standard Atmosphere
  • Calculator giving standard air pressure at a specified altitude, or altitude at which a pressure would be standard
  • Current map of global mean sea-level pressure
  • Calculate pressure from altitude and vice versa

Experiments[edit]

  • Movies on atmospheric pressure experiments from Georgia State University’s HyperPhysics website – requires QuickTime
  • Test showing a can being crushed after boiling water inside it, then moving it into a tub of ice-cold water.

From Wikipedia, the free encyclopedia

«Air pressure» redirects here. For the pressure of air in other systems, see Pressure.

Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1013.25 millibars,[1] 760 mm Hg, 29.9212 inches Hg, or 14.696 psi.[2] The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth’s atmospheric pressure at sea level is approximately 1 atm.

In most circumstances, atmospheric pressure is closely approximated by the hydrostatic pressure caused by the weight of air above the measurement point. As elevation increases, there is less overlying atmospheric mass, so atmospheric pressure decreases with increasing elevation. Because the atmosphere is thin relative to the Earth’s radius—especially the dense atmospheric layer at low altitudes—the Earth’s gravitational acceleration as a function of altitude can be approximated as constant and contributes little to this fall-off. Pressure measures force per unit area, with SI units of pascals (1 pascal = 1 newton per square metre, 1 N/m2). On average, a column of air with a cross-sectional area of 1 square centimetre (cm2), measured from the mean (average) sea level to the top of Earth’s atmosphere, has a mass of about 1.03 kilogram and exerts a force or «weight» of about 10.1 newtons, resulting in a pressure of 10.1 N/cm2 or 101 kN/m2 (101 kilopascals, kPa). A column of air with a cross-sectional area of 1 in2 would have a weight of about 14.7 lbf, resulting in a pressure of 14.7 lbf/in2.

Mechanism[edit]

Atmospheric pressure is caused by the gravitational attraction of the planet on the atmospheric gases above the surface and is a function of the mass of the planet, the radius of the surface, and the amount and composition of the gases and their vertical distribution in the atmosphere.[3][4] It is modified by the planetary rotation and local effects such as wind velocity, density variations due to temperature and variations in composition.[5]

Mean sea-level pressure[edit]

Map showing atmospheric pressure in mbar or hPa

15-year average mean sea-level pressure for June, July, and August (top) and December, January, and February (bottom). ERA-15 re-analysis.

The mean sea-level pressure (MSLP) is the atmospheric pressure at mean sea level (PMSL). This is the atmospheric pressure normally given in weather reports on radio, television, and newspapers or on the Internet. When barometers in the home are set to match the local weather reports, they display pressure adjusted to sea level, not the actual local atmospheric pressure.

The altimeter setting in aviation is an atmospheric pressure adjustment.

Average sea-level pressure is 1013.25 hPa (29.921 inHg; 760.00 mmHg). In aviation weather reports (METAR), QNH is transmitted around the world in hectopascals or millibars (1 hectopascal = 1 millibar), except in the United States, Canada, and Japan where it is reported in inches of mercury (to two decimal places). The United States and Canada also report sea-level pressure SLP, which is adjusted to sea level by a different method, in the remarks section, not in the internationally transmitted part of the code, in hectopascals or millibars.[6] However, in Canada’s public weather reports, sea level pressure is instead reported in kilopascals.[7]

In the US weather code remarks, three digits are all that are transmitted; decimal points and the one or two most significant digits are omitted: 1013.2 hPa (14.695 psi) is transmitted as 132; 1000 hPa (100 kPa) is transmitted as 000; 998.7 hPa is transmitted as 987; etc. The highest sea-level pressure on Earth occurs in Siberia, where the Siberian High often attains a sea-level pressure above 1050 hPa (15.2 psi; 31 inHg), with record highs close to 1085 hPa (15.74 psi; 32.0 inHg). The lowest measurable sea-level pressure is found at the centres of tropical cyclones and tornadoes, with a record low of 870 hPa (12.6 psi; 26 inHg).

Surface pressure [edit]

Surface pressure is the atmospheric pressure at a location on Earth’s surface (terrain and oceans). It is directly proportional to the mass of air over that location.

For numerical reasons, atmospheric models such as general circulation models (GCMs) usually predict the nondimensional logarithm of surface pressure.

The average value of surface pressure on Earth is 985 hPa.[8] This is in contrast to mean sea-level pressure, which involves the extrapolation of pressure to sea level for locations above or below sea level. The average pressure at mean sea level (MSL) in the International Standard Atmosphere (ISA) is 1013.25 hPa, or 1 atmosphere (atm), or 29.92 inches of mercury.

Pressure (P), mass (m), and acceleration due to gravity (g) are related by P = F/A = (m*g)/A, where A is the surface area. Atmospheric pressure is thus proportional to the weight per unit area of the atmospheric mass above that location.

Altitude variation[edit]

Variation in atmospheric pressure with altitude, computed for 15 °C and 0% relative humidity.

This plastic bottle was sealed at approximately 4,300 metres (14,000 ft) altitude, and was crushed by the increase in atmospheric pressure, recorded at 2,700 metres (9,000 ft) and 300 metres (1,000 ft), as it was brought down towards sea level.

Pressure on Earth varies with the altitude of the surface, so air pressure on mountains is usually lower than air pressure at sea level. Pressure varies smoothly from the Earth’s surface to the top of the mesosphere. Although the pressure changes with the weather, NASA has averaged the conditions for all parts of the earth year-round. As altitude increases, atmospheric pressure decreases. One can calculate the atmospheric pressure at a given altitude.[9] Temperature and humidity also affect the atmospheric pressure. Pressure is proportional to temperature and inversely proportional to humidity. And it is necessary to know both of these to compute an accurate figure. The graph on the rightabove was developed for a temperature of 15 °C and a relative humidity of 0%.

At low altitudes above sea level, the pressure decreases by about 1.2 kPa (12 hPa) for every 100  metres. For higher altitudes within the troposphere, the following equation (the barometric formula) relates atmospheric pressure p to altitude h:
{displaystyle {begin{aligned}p&=p_{0}cdot left(1-{frac {Lcdot h}{T_{0}}}right)^{frac {gcdot M}{R_{0}cdot L}}\&=p_{0}cdot left(1-{frac {gcdot h}{c_{text{p}}cdot T_{0}}}right)^{frac {c_{text{p}}cdot M}{R_{0}}}approx p_{0}cdot exp left(-{frac {gcdot hcdot M}{T_{0}cdot R_{0}}}right)end{aligned}}}

. The values in these equations are:

Parameter Description Value
h Height above mean sea level  m
p0 Sea level standard atmospheric pressure 101325 Pa
L Temperature lapse rate, = g/cp for dry air ~ 0.00976 K/m
cp Constant-pressure specific heat 1004.68506 J/(kg·K)
T0 Sea level standard temperature 288.16 K
g Earth-surface gravitational acceleration 9.80665 m/s2
M Molar mass of dry air 0.02896968 kg/mol
R0 Universal gas constant 8.314462618 J/(mol·K)

Local variation[edit]

Hurricane Wilma on 19 October 2005. The pressure in the eye of the storm was 882 hPa (12.79 psi) at the time the image was taken.

Atmospheric pressure varies widely on Earth, and these changes are important in studying weather and climate. Atmospheric pressure shows a diurnal or semidiurnal (twice-daily) cycle caused by global atmospheric tides. This effect is strongest in tropical zones, with an amplitude of a few hectopascals, and almost zero in polar areas. These variations have two superimposed cycles, a circadian (24 h) cycle, and a semi-circadian (12 h) cycle.

Records[edit]

The highest adjusted-to-sea level barometric pressure ever recorded on Earth (above 750 meters) was 1084.8 hPa (32.03 inHg) measured in Tosontsengel, Mongolia on 19 December 2001.[10] The highest adjusted-to-sea level barometric pressure ever recorded (below 750 meters) was at Agata in Evenk Autonomous Okrug, Russia (66°53′ N, 93°28′ E, elevation: 261 m, 856 ft) on 31 December 1968 of 1083.8 hPa (32.005 inHg).[11] The discrimination is due to the problematic assumptions (assuming a standard lapse rate) associated with reduction of sea level from high elevations.[10]

The Dead Sea, the lowest place on Earth at 430 metres (1,410 ft) below sea level, has a correspondingly high typical atmospheric pressure of 1065 hPa.[12] A below-sea-level surface pressure record of 1081.8 hPa (31.95 inHg) was set on 21 February 1961.[13]

The lowest non-tornadic atmospheric pressure ever measured was 870 hPa (0.858  atm; 25.69 inHg), set on 12 October 1979, during Typhoon Tip in the western Pacific Ocean. The measurement was based on an instrumental observation made from a reconnaissance aircraft.[14]

Measurement based on the depth of water[edit]

One atmosphere (101.325 kPa or 14.7 psi) is also the pressure caused by the weight of a column of freshwater of approximately 10.3 m (33.8 ft). Thus, a diver 10.3 m underwater experiences a pressure of about 2 atmospheres (1 atm of air plus 1 atm of water). Conversely, 10.3 m is the maximum height to which water can be raised using suction under standard atmospheric conditions.

Low pressures, such as natural gas lines, are sometimes specified in inches of water, typically written as w.c. (water column) gauge or w.g. (inches water) gauge. A typical gas-using residential appliance in the US is rated for a maximum of 12 psi (3.4 kPa; 34 mbar), which is approximately 14 w.g. Similar metric units with a wide variety of names and notation based on millimetres, centimetres or metres are now less commonly used.

Boiling point of liquids[edit]

Pure water boils at 100 °C (212 °F) at earth’s standard atmospheric pressure. The boiling point is the temperature at which the vapour pressure is equal to the atmospheric pressure around the liquid.[15] Because of this, the boiling point of liquids is lower at lower pressure and higher at higher pressure. Cooking at high elevations, therefore, requires adjustments to recipes[16] or pressure cooking. A rough approximation of elevation can be obtained by measuring the temperature at which water boils; in the mid-19th century, this method was used by explorers.[17] Conversely, if one wishes to evaporate a liquid at a lower temperature, for example in distillation, the atmospheric pressure may be lowered by using a vacuum pump, as in a rotary evaporator.

Measurement and maps[edit]

An important application of the knowledge that atmospheric pressure varies directly with altitude was in determining the height of hills and mountains, thanks to reliable pressure measurement devices. In 1774, Maskelyne was confirming Newton’s theory of gravitation at and on Schiehallion mountain in Scotland, and he needed to measure elevations on the mountain’s sides accurately. William Roy, using barometric pressure, was able to confirm Maskelyne’s height determinations, the agreement being to be within one meter (3.28 feet). This method became and continues to be useful for survey work and map making.[18]

See also[edit]

  • Atmospheric density – Mass per unit volume of earths atmosphere
  • Atmosphere of Earth – Gas layer surrounding Earth
  • Barometric formula – Formula used to model how air pressure varies with altitude
  • Barotrauma – Injury caused by pressure – physical damage to body tissues caused by a difference in pressure between an air space inside or beside the body and the surrounding gas or liquid.
  • Cabin pressurization – Process to maintain internal air pressure in aircraft
  • Cavitation – Low-pressure voids formed in liquids
  • Collapsing can – an aluminium can is crushed by the atmospheric pressure surrounding it
  • Effects of high altitude on humans – Environmental effects on physiology
  • High-pressure area – In meteorology, an anticyclone
  • International Standard Atmosphere – Atmospheric model, a tabulation of typical variations of principal thermodynamic variables of the atmosphere (pressure, density, temperature, etc.) with altitude, at middle latitudes.
  • Low-pressure area – Area with air pressures lower than adjacent areas
  • Meteorology – Interdisciplinary scientific study of the atmosphere focusing on weather forecasting
  • NRLMSISE-00, an empirical, global reference atmospheric model of the Earth from ground to space
  • Plenum chamber – Chamber containing a fluid under pressure
  • Pressure – Force distributed over an area
  • Pressure measurement – Analysis of force applied by a fluid on a surface
  • Standard atmosphere (unit) – Unit of pressure defined as 101325 Pa
  • Horse latitudes – Latitudes 30–35 degrees north and south of the Equator

References[edit]

  1. ^ «Statement (2001)». BIPM. Retrieved 2022-03-19.
  2. ^ International Civil Aviation Organization. Manual of the ICAO Standard Atmosphere, Doc 7488-CD, Third Edition, 1993. ISBN 92-9194-004-6.
  3. ^ «atmospheric pressure (encyclopedic entry)». National Geographic. Archived from the original on 28 February 2018. Retrieved 28 February 2018.
  4. ^ «Q & A: Pressure – Gravity Matters?». Department of Physics. University of Illinois Urbana-Champaign. Archived from the original on 28 February 2018. Retrieved 28 February 2018.
  5. ^ Jacob, Daniel J. (1999). Introduction to Atmospheric Chemistry. Princeton University Press. ISBN 9780691001852. Archived from the original on 2021-10-01. Retrieved 2020-10-15.
  6. ^ Sample METAR of CYVR Archived 2019-05-25 at the Wayback Machine Nav Canada
  7. ^ Montreal Current Weather, CBC Montreal, Canada, archived from the original on 2014-03-30, retrieved 2014-03-30
  8. ^ Jacob, Daniel J. Introduction to Atmospheric Chemistry Archived 2020-07-25 at the Wayback Machine. Princeton University Press, 1999.
  9. ^ A quick derivation relating altitude to air pressure Archived 2011-09-28 at the Wayback Machine by Portland State Aerospace Society, 2004, accessed 05032011
  10. ^ a b World: Highest Sea Level Air Pressure Above 750 m, Wmo.asu.edu, 2001-12-19, archived from the original on 2012-10-17, retrieved 2013-04-15
  11. ^ World: Highest Sea Level Air Pressure Below 750 m, Wmo.asu.edu, 1968-12-31, archived from the original on 2013-05-14, retrieved 2013-04-15
  12. ^ Kramer, MR; Springer C; Berkman N; Glazer M; Bublil M; Bar-Yishay E; Godfrey S (March 1998). «Rehabilitation of hypoxemic patients with COPD at low altitude at the Dead Sea, the lowest place on earth» (PDF). Chest. 113 (3): 571–575. doi:10.1378/chest.113.3.571. PMID 9515826. Archived from the original (PDF) on 2013-10-29.
  13. ^ Court, Arnold (1969). «Improbable Pressure Extreme: 1070 Mb». Bulletin of the American Meteorological Society. 50 (4): 248–50. JSTOR 26252600.
  14. ^ Chris Landsea (2010-04-21). «Subject: E1), Which is the most intense tropical cyclone on record?». Atlantic Oceanographic and Meteorological Laboratory. Archived from the original on 6 December 2010. Retrieved 2010-11-23.
  15. ^ Vapour Pressure, Hyperphysics.phy-astr.gsu.edu, archived from the original on 2017-09-14, retrieved 2012-10-17
  16. ^ High Altitude Cooking, Crisco.com, 2010-09-30, archived from the original on 2012-09-07, retrieved 2012-10-17
  17. ^ Berberan-Santos, M. N.; Bodunov, E. N.; Pogliani, L. (1997). «On the barometric formula». American Journal of Physics. 65 (5): 404–412. Bibcode:1997AmJPh..65..404B. doi:10.1119/1.18555.
  18. ^ Hewitt, Rachel, Map of a Nation – a Biography of the Ordnance Survey ISBN 1-84708-098-7

External links[edit]

  • 1976 Standard Atmosphere from NASA
  • Source code and equations for the 1976 Standard Atmosphere
  • A mathematical model of the 1976 U.S. Standard Atmosphere
  • Calculator using multiple units and properties for the 1976 Standard Atmosphere
  • Calculator giving standard air pressure at a specified altitude, or altitude at which a pressure would be standard
  • Current map of global mean sea-level pressure
  • Calculate pressure from altitude and vice versa

Experiments[edit]

  • Movies on atmospheric pressure experiments from Georgia State University’s HyperPhysics website – requires QuickTime
  • Test showing a can being crushed after boiling water inside it, then moving it into a tub of ice-cold water.

С атмосферным давлением каждый хорошо знаком, как минимум, благодаря урокам физики и прогнозам погоды. Однако с научной точки зрения понятие давления, а также особенности его возникновения выглядят намного сложнее. Кроме того, интерес вызывают нюансы влияния давления на человека.

Что такое атмосферное давление?

Атмосферное давление – это давление газовой оболочки нашей планеты, атмосферы, которое действует на все имеющиеся в ней предметы, а также земную поверхность. Давление соответствует силе, которая действует в атмосфере на единицу площади.

Атмосфера Земли (фото с МКС)

Атмосфера Земли (фото с МКС)

Если говорить более простым языком, то это сила, с которой повсюду окружающий нас воздух воздействует на поверхность земли и объекты. Отслеживая изменения атмосферного давления, можно в совокупности с другими факторами прогнозировать погодные условия.

Почему и вследствие чего создается атмосферное давление?

Специалисты, изучающие атмосферу Земли и различные метеорологические явления, тщательно следят за тем, как перемещаются воздушные массы. Это основной фактор, влияющий на климатические условия той или иной местности. Эти наблюдения дали возможность понять, почему возникает атмосферное давление.

Всему виной гравитация. Путем множества экспериментов доказано, что воздух отнюдь не невесомый. Он состоит из различных газов, которые имеют определенный вес. Таким образом, на воздух действует сила притяжения Земли, которая и способствует образованию давления.

Интересный факт: весь воздух на планете (или вся атмосфера Земли) весит 51 х 1014 тонн.

Вокруг земного шара масса воздуха неодинаковая. Соответственно колеблется и уровень атмосферного давления. На участках с большей массой воздуха наблюдается более высокое давление. Если же воздуха меньше (его также называют разреженным в таких случаях), то и давление ниже.

Движение Солнце

Движение Солнце

Почему меняется вес атмосферы? Секрет этого явления таится в нагревании воздушных масс. Дело в том, что нагревание воздуха происходит вовсе не от солнечных лучей, а за счет земной поверхности.

Вблизи нее воздух нагревается и, становясь легче, поднимается вверх. В это время охлажденные потоки тяжелеют и опускаются вниз. Этот процесс происходит беспрерывно. Каждый воздушный поток имеет свое давление, а его разность вызывает ветер.

Как влияет состав атмосферы на давление?

В состав атмосферы входит огромное количество газов. Преимущественно это азот и кислород (98%). Также имеется углекислый газ, неон, аргон и др. Атмосфера начинается с пограничного слоя толщиной 1-2 км и заканчивается экзосферой на высоте около 10 000 км, где плавно переходит в межпланетное пространство.

Состав атмосферы

Состав атмосферы

Состав атмосферы влияет на давление за счет плотности. Каждый компонент имеет свою плотность. Чем больше высота, тем тоньше слой атмосферы и ниже его плотность. Соответственно снижается и давление.

Измерение атмосферного давления

В Международной системе единиц атмосферное давление измеряется в паскалях (Па). Также в России используются такие единицы, как бар, миллиметры ртутного столба и их производные. Их применение обусловлено приборами, при помощи которых измеряется давление – ртутными барометрами. 1 мм ртутного столба соответствует около 133 Па.

Барометры бывают двух типов:

  • жидкостные;
  • механические (барометр-анероид).

Жидкостные барометры заполняются ртутью. Изобретение данного прибора – это заслуга итальянского ученого Эванджелисты Торричелли. В 1644 году он проводил эксперимент с емкостью, ртутью и колбой, которая открытым отверстием опускалась в жидкость.

При изменении давления ртуть то поднималась, то опускалась в колбе. Современные ртутные барометры со шкалами считаются наиболее точными, но не очень удобными, поэтому их используют на метеорологических станциях.

Барометры

Барометры

Более распространены барометры-анероиды. В конструкции такого прибора предусмотрена металлическая коробка с разреженным воздухом внутри. Когда давление понижается, коробка расширяется. При возрастающем давлении коробка сжимается и действует на прикрепленную пружину. Пружина приводит в движение стрелку, которая отображает на шкале уровень давления.

Интересный факт: существует эталон единицы давления (как и других единиц физических величин). Первичный эталон, отображающий абсолютное давление максимально точно, находится во Всероссийском НИИ метрологии имени Менделеева (Санкт-Петербург).

Норма атмосферного давления для человека

Нормальное атмосферное давление – это 760 мм ртутного столба или 101 325 Па при температуре 0℃ на уровне моря (45º широты). При этом на каждый квадратный сантиметр поверхности земли атмосфера воздействует с силой в 1,033 кг. Ртутный столб высотой 760 мм уравновешивает массу этого воздушного столба.

Показатель в 760 мм тоже был определен Торричелли в ходе эксперимента. Также он заметил, что когда колба наполняется ртутью, вверху остается пустота. Впоследствии это явление получило название «торричеллиевой пустоты». Тогда ученый еще не знал, что в ходе своего эксперимента создал вакуум – то есть пространство, свободное от каких-либо веществ.

При стандартном давлении в 760 мм ртутного столба человек ощущает себя наиболее комфортно. Если учесть предыдущие данные, то на человека воздух давит с силой около 16 тонн. Почему тогда мы не ощущаем этого давления?

Дело в том, что внутри организма тоже имеется давление. Не только люди, но и представители животного мира приспособились к атмосферному давлению. Каждый орган формировался и развивался под влиянием данной силы. Когда атмосфера воздействует на тело, эта сила распределяется равномерно по всей поверхности. Таким образом, давление уравновешивается, и мы его не чувствуем.

Карта атмосферного давления России

Карта атмосферного давления России

Норму атмосферного давления не стоит путать с климатической нормой. Каждый регион имеет свои стандарты для определенного времени года. Например, жителям Владивостока повезло, поскольку там среднегодовой показатель атмосферного давления почти равен норме – 761 мм ртутного столба.

А в населенных пунктах, расположенных в горной местности (например, в Тибете), давление гораздо ниже – 413 мм ртутного столба. Это связано с высотой около 5000 м.

Повышение и понижение давления

Когда давление превышает отметку в 760 мм. рт. ст., его называют повышенным, а когда показатель меньше нормы – пониженным.

В течение 24 часов происходит несколько перепадов атмосферного давления. Утром и вечером оно повышается, а после 12 часов дня и ночи – понижается. Это происходит в связи с тем, что меняется температура воздуха и, соответственно, его потоки перемещаются.

В зимний период над материковой частью Земли отмечается самое высокое атмосферное давление, потому что воздух имеет низкую температуру и отличается высокой плотностью. Летом наблюдается противоположная ситуация – отмечается минимальное давление.

В более глобальных масштабах уровень давления тоже зависит от температуры. Земная поверхность нагревается неодинаково: планета имеет геоидную (а не идеально круглую) форму и вращается вокруг Солнца. Одни зоны нагреваются сильнее, другие – слабее. Из-за этого и атмосферное давление распределяется по поверхности планеты зонально.

Пояса атмосферного давления

Пояса атмосферного давления

Ученые выделяют 3 пояса, где преобладает низкое давление и 4 пояса с преобладающими максимумами. Зона экватора прогревается больше всего, поэтому легкий теплый воздух поднимается вверх, а у поверхности образовывается низкое давление.

Вблизи полюсов все наоборот: холодный воздух опускается, поэтому здесь отмечается высокое давление. Если посмотреть на схему распределения давления по поверхности планеты, можно заметить, что пояса минимумов и максимумов чередуются.

Кроме того, нужно помнить и о неравномерном нагревании обоих полушарий Земли в течение года. Это приводит к определенному смещению поясов низкого и высокого давления. Летом они сдвигаются в северном направлении, а зимой – в южном.

Влияние на человека

Атмосферное давление оказывает серьезное воздействие на организм человека. Это вполне естественно, если учитывать все вышесказанное относительно силы, с которой воздух давит на наше тело и оказываемого противодействия.

Как изменения в погоде влияют на человека

Как изменения в погоде влияют на человека

Существует понятие метеорологической зависимости, подтвержденное наукой и медициной. Метеопатами считаются люди, организм которых реагирует даже на минимальные отклонения давления от нормы. К ним также относятся люди с некоторыми хроническими заболеваниями (в частности сердечнососудистой, нервной системы и др.).

В целом организм человека умеет приспосабливаться к изменению климатических условий. Например, при путешествии в страну с совершенно другими погодными условиями может потребоваться несколько дней на акклиматизацию.

Значительные отклонения от нормы будут ощутимы для абсолютно любого человека. Сюда относится как повышенное, так и пониженное давление.

В обычной жизни повышение атмосферного давления до критического уровня, при котором ухудшается самочувствие человека, не происходит (за исключением вышеупомянутых метеозависимых и хронически больных). Ощутить его эффект можно, например, при погружении на большую глубину.

Пониженное и повышенное давление

Пониженное и повышенное давление

Пониженное атмосферное давление более опасно. Его воздействие можно легко ощутить на большой высоте. Существует понятие высотной болезни, при которой увеличивается количество углекислого газа. Объем кислорода при этом, наоборот, понижается, поэтому ткани организма ощущают кислородное голодание. Сосуды быстро реагируют на это, провоцируя резкое возрастание давления в организме.

Циклон

Циклон – это огромная масса воздуха, которая вращается в виде вихря вокруг вертикальной оси диаметром до нескольких тысяч километров. В центре данного вихря наблюдается пониженное давление.

Циклоны

Циклоны

В Северном полушарии атмосферный вихрь циклона вращается против часовой стрелки, в Южном – по часовой. Циклоны возникают регулярно, так как их образование напрямую связано с вращением Земли. Не бывает циклонов рядом с экватором.

Циклоны бывают двух типов:

  1. Тропические. Возникают в тропических широтах, отличаются относительно небольшими размерами. Однако им свойственна огромная, разрушительная сила ветра.
  2. Внетропические. Формируются в полярных и умеренных широтах. Достигают нескольких тысяч километров в диаметре.

Интересный факт: в тропических циклонах нередко наблюдается «глаз бури» – это область размером около 20 км в самом центре вихря, в которой сохраняется ясная и безветренная погода.

Главные отличительные особенности циклона – колоссальная энергия, которая проявляется в виде сильных ветров, бурь, гроз, шквалов, осадков. Мощным тропическим циклонам присваивают уникальные имена или названия, например, «Катрина» (2005), «Нина» (1975), «Дориан» (2019).

Антициклон

Антициклон – это не только противоположность циклона. Данное явление имеет другой механизм возникновения. Ветер в обоих полушариях Земли движется в обратном направлении по сравнению с циклоном.

Антициклон

Антициклон

Антициклон представляет собой область высокого давления. Ей свойственны замкнутые изобары – это линии, которыми отмечаются места с одинаковым атмосферным давлением.

Антициклон приносит стабильные погодные условия, соответствующие времени года. Летом это безветренная жаркая погода, зимой – морозная. Характеризуется малым количеством облаков или полным их отсутствием.

Формируются антициклоны на определенных участках. Например, чаще всего они возникают над большими массивами льда: в Антарктиде, Гренландии, Арктике. Также встречаются в тропиках.

Антициклоны тоже несут в себе опасность и неприятные последствия. Они могут способствовать возникновению пожаров, продолжительных засух. При долгом отсутствии ветра в крупных городах накапливаются вредные вещества, газы, что особенно остро ощущают люди с заболеваниями дыхательных путей.

Разница между циклоном и антициклоном

Разница между циклоном и антициклоном

Интересный факт: существуют блокирующие циклоны, которые формируются над определенной зоной и никуда не движутся. При этом они не пропускают прочие воздушные массы. Обычно они длятся не дольше 5 суток, но регулярно в Европейской части России антициклоны держатся около месяца. Последний раз это было в 2015 году. Результат – жара, засуха, лесные пожары.

Как с высотой изменяется атмосферное давление? Формула, график

Атмосферное давление напрямую зависит от высоты. Чем выше, тем давление ниже и наоборот. Если подняться на 12 м выше уровня моря, столбик ртути в барометре снизится на 1 мм.

Давление чаще отображают в гектопаскалях вместо мм рт. ст.: 1 мм = 133,3 Па = 1, 333 гПа. Показать взаимоотношение высоты и давления можно при помощи несложной формулы:

∆h/∆P=12 м/мм рт. ст или ∆h/∆P=9 м/гПа,

где ∆h — изменение высоты,
∆P — изменение давления.

Таким образом, при подъеме на 9 метров, уровень давления снижается на 1 гПа. Этот показатель называется барической ступенью. Норма атмосферного давления – 1013 гПа (можно округлить до 1000).

Как с помощью этих данных рассчитать изменение давление на другой высоте? К примеру, при подъеме на 90 м давление снизится на 10 гПа. В таком случае выходит, что при подъеме на 900 м давление упадет до 0.

Но с высотой меняется и плотность воздуха, поэтому, когда речь идет о большей дистанции (начиная с 1,5-2 км), все расчеты надо проводить с учетом данного показателя.

График соотношения высоты и давления

График соотношения высоты и давления

График изменения атмосферного давления с высотой наглядно отображает все вышесказанное. Он приобретает вид кривой линии, а не прямой. Из-за того, что плотность атмосферы неодинаковая, с увеличением высоты давление начинает снижаться все медленнее. Однако оно никогда не достигнет нуля, поскольку повсюду есть какое-то вещество – во Вселенной нет вакуума.

Атмосферное давление в горах

В горах давление будет в любом случае ниже. Как себя при этом чувствует человек, зависит от высоты, а также дополнительных условий. Например, при нормальной влажности подъем на 3000 м может вызвать слабость, снижение работоспособности. Это объясняется недостатком кислорода.

Во влажном климате аналогичные ощущения возникают уже на высоте 1000 м. Дело в том, что молекулы воды вытесняют молекулы кислорода – во влажном воздухе его меньше. А в сухом климате можно практически без проблем подняться на 5000 м.

Снижение давления с высотой

Снижение давления с высотой

Разная высота и ее влияние:

  1. 5 км – ощущение недостатка кислорода.
  2. 6 км – максимальная высота, на которой располагаются постоянные поселения.
  3. 8,9 км – высота Эвереста. Вода закипает при температуре +68℃. Недолго находиться на таком уровне могут подготовленные люди.
  4. 13,5 км – безопасно находиться можно лишь при наличии чистого кислорода. Максимально допустимая высота, на которой можно пребывать без специальной защиты.
  5. 20 км – высота, недопустимая для человека. Только при условии нахождения в герметичной кабине.

Интересное видео про атмосферное давление

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Ртутный барометр состоит из металлической чашки, наполненной ртутью, и полой стеклянной трубки, запаянной с одного конца. Последний заполняется ртутью, а его нижний открытый конец погружается в чашку. Вес столба жидкости в трубке уравновешивает давление воздуха, которому подвергается ртуть в чашке.

Атмосферное давление на уровне моря. Атмосферное давление

Давление воздуха в одной и той же точке земной поверхности не остается постоянным, а изменяется в зависимости от различных процессов, происходящих в атмосфере. В качестве «нормального» атмосферного давления условно считается давление 760 мм рт. ст. т. е. одна (естественная) атмосфера (§ 154).

Давление воздуха на уровне моря во всех частях света в среднем близко к атмосферному. Видно, что давление воздуха уменьшается по мере подъема над уровнем моря, соответственно. Его плотность уменьшается. Воздух становится все более разреженным. Если вы откроете хорошо закупоренный контейнер в долине на вершине горы, немного воздуха выйдет наружу. Напротив, если вы откроете его у подножия горы, небольшое количество воздуха попадет в пробку наверху. На высоте около 6 км давление и плотность воздуха снижаются примерно вдвое.

Каждой высоте соответствует определенное давление воздуха. Поэтому можно измерить давление в определенной точке на вершине горы или в корзине воздушного шара, чтобы определить, как меняется атмосферное давление с высотой. Высота над уровнем моря или высота воздушного шара. Чувствительность обычных передних глаз настолько велика, что подъем на 2-3 метра в передней части глаза приведет к значительному смещению индекса. Поднимаясь или опускаясь по лестнице с анатомическими структурами, постепенное изменение давления происходит прямолинейно. Этот опыт удобно проводить на пологой лестнице станции метро. Часто анекдоты калибруются непосредственно по росту. Положение стрелки указывает на высоту, на которой находится прибор. Такие роговицы называются альтиметрами (рис. 295). Ими оснащаются самолеты, позволяя пилоту определять объем полета.

Рисунок 295.Высота полета самолета. Длинные стрелки считаются в сотнях метров, короткие — в километрах. Перед полетом головка может быть обнулена под стрелкой на поверхности земли.

Падение давления воздуха при подъеме объясняется так же, как падает давление в глубокой воде при подъеме со дна на поверхность. Воздух на уровне моря сжимается под действием веса всей атмосферы Земли, тогда как более высокие слои атмосферы сжимаются только под действием веса воздуха, находящегося над этими слоями. В целом, изменение давления от точки к точке в атмосфере или под действием силы тяжести подчиняется тем же законам, что и давление на жидкость. Давление одинаково во всех частях горизонтального уровня — внизу давление уменьшается за счет веса столба воздуха, высота которого равна высоте перехода, а сечение перехода равно единице.

Рис. 296.Изображение уменьшения давления с высотой. Справа — колонны одинаковой толщины, взятые на разных высотах. Самая толстая заштрихованная колонка наиболее сжатого воздуха.

Однако из-за высокой компрессии газа общая картина распределения давления на высоте в атмосфере существенно отличается от распределения давления жидкостей. На самом деле, планируйте снижение давления воздуха с высотой. Оси оператора изображают высоту и так далее. На определенном уровне (например, над уровнем моря), а ось пиков показывает давление (рис. 296). Поднимитесь по лестнице на высоту. Чтобы найти давление на следующем этапе, необходимо равномерно удалить вес столба воздуха на высоте. Однако с увеличением высоты плотность воздуха уменьшается. Поэтому потеря давления при подъеме на следующую ступень тем меньше, чем выше лестница. Поэтому давление снижается неравномерно по мере роста. Высота, на которой плотность воздуха увеличивается, мала, а давление быстро падает. Плотность воздуха уменьшается, и давление снижается.

Барическая ступень

1 Высота, на которой давление должно повыситься или понизиться, чтобы его изменил HPA (экстракт), называется барометрическим шагом. Барометрический шаг удобно использовать для решения задач, не требующих высокой точности, чтобы оценить давление по известным различиям в высоте над уровнем моря. Из фундаментального закона статики, барометрический шаг (h) равен: h = -dz/Δp= 1/g m/gpa. При температуре воздуха 0°C и давлении 1000 гПа барометрический шаг равен 8 /hPa. Таким образом, для повышения давления на 1 HPA требуется увеличение на 8 метров.

При повышении температуры и высоты над уровнем моря (в частности, на 0,4% на градус тепла). Другими словами, он прямо пропорционален температуре и обратно пропорционален давлению. Обратной стороной парикмахера является вертикальный парикмахер. То есть, изменение давления при подъеме или опускании на 100 метров. При температуре 0°C и давлении 1000 гПа это составляет 12,5 гПа.

Приведение к уровню моря

Давление адаптируется к уровню моря, чтобы все метеостанции посылали короткие телеграммы. Для того чтобы сравнить давление на станциях, расположенных на разных высотах, давления наносятся на обзорную карту и приводятся к уровню моря, который является единой точкой отсчета. При давлении на уровне моря используется короткий тип Лапласа вида Z 2 -Z 1 = 18400 (1+λT)LG (P 1 /P 2). Это означает, что, зная давление и температуру на уровне Z 2, мы можем найти давление (P 1) на уровне моря (Z 1 = 0).

Расчет давления на высоте H от давления P o до уровня моря и температуры:.

Где P o — давление PA на уровне моря pa-m — молекулярный вес сухого воздуха 0,029 кг/моль- g — ускорение силы тяжести 9,81 м/с²-р. Предельная температура воздуха k, t = t + 273, где t — температура °C-h — высота m.

На более низких высотах атмосферное давление снижается на 1 мм рт. ст. на каждые 12 метров подъема. На больших высотах эта закономерность прерывается.

Атмосферное давление — это давление столба воздуха на единицу поверхности. Она выражается в килограммах на см2, но в прошлом эта величина измерялась только с помощью ртутных наличников, поэтому принято выражать эту величину в миллиметрах ртути (ММГ). Нормальное атмосферное давление составляет 760 мм рт. ст. или 1,033 кг/см2 и интерпретируется как воздух (1 АТА).

Некоторые операции могут потребовать работы при повышенном или пониженном атмосферном давлении. Это может иметь большое значение (от 0,15-0,2 ата до 5-6 ата и более).

Влияние пониженного атмосферного давления на организм

На больших высотах атмосферное давление снижается. Чем больше высота над уровнем моря, тем ниже атмосферное давление. Так, на высоте 1000 м он составляет 734 мм рт. ст., 2000 м — 569 мм, 3000 м — 526 мм рт. ст. и на высоте 15000 м — 90 мм рт. ст.

Снижение атмосферного давления вызывает изменения в крови в виде более частого и глубокого дыхания, более частых (менее сильных) ударов сердца, небольшого снижения артериального давления и увеличения количества красных кровяных телец. Клетки.

Негативное воздействие низкого атмосферного давления на организм основано на недостатке кислорода. Это связано с тем, что при нормальном функционировании дыхательной и кровеносной систем в организм поступает меньше кислорода из-за снижения парциального давления кислорода при уменьшении атмосферного давления. В результате кровь не полностью насыщается кислородом и органы и ткани не полностью снабжаются им, что приводит к недостатку кислорода (анаэробии). Эти изменения более серьезны при работе с высокоскоростными подъемными механизмами (например, канатами), где происходит быстрое падение атмосферного давления, которое возникает при быстром подъеме на большую высоту. Быстро развивающийся недостаток кислорода влияет на клетки мозга, что вызывает головокружение, тошноту и иногда рвоту, нарушение двигательной координации, потерю памяти, сонливость и снижение окислительных процессов в мышечных клетках из-за недостатка кислорода.

Согласно практике, подъем на высоту более 4500 метров, где атмосферное давление не превышает 430 мм рт. ст., трудно переносится без кислорода для дыхания, а на высоте 8000 метров (давление 277 мм рт. ст.) люди теряют чувствительность.

Летом зоны низкого атмосферного давления восстанавливаются в более теплых широтах Северного полушария. Над Азией формируется огромная область низкого атмосферного давления, ориентированная на тропики, — азиатский минимум.

Какие последствия действия атмосферного давления

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Возьмите трубку с плунжером, опустите один конец в емкость с водой, поднимите плунжер вверх, и вода поднимется за плунжером (рис. 102). Это возможно только в том случае, если давление воды в резервуаре выше, чем давление под поршнем. Из-за давления веса уровень воды под поршнем выше, чем давление в емкости, и вода не может подняться из-за более высокого давления. Вода должна вернуться в емкость. В результате к жидкости в контейнере прикладывается дополнительное давление, которое превышает давление жидкости в толще воды под поршнем. Это давление создается молекулами в атмосфере. Действуя на свободную поверхность воды, атмосферное давление в соответствии с законом Паскаля передается одинаково во всех направлениях.

Поскольку под поршнем нет воздуха, вода поступает в трубу под неравномерным давлением.

Каково значение атмосферного давления

Значение атмосферного давления довольно высокое. Это может быть подтверждено многими экспериментами.

Возьмите два полых полушария с хорошо отполированными поперечными сечениями. Один из них имеет специальное приспособление с краном, в который можно закачивать воздух.

Закрепите одну из полусфер на штативе, подсоедините снизу другую полусферу и начните откачивать воздух из полости с помощью насоса на кране. Нижнее полушарие плотно прижимается к верхнему полушарию. Это возможно только в том случае, если давление в полости баллона меньше внешнего давления.

В результате того, что воздушный насос вытягивает воздух, давление в полусферической полости уменьшается, но внешнее давление остается неизменным. Поэтому нижнее полушарие сильно давит на верхнее. SW.

Величина силы, действующей на уменьшение давления воздушного шара, может быть определена по весу груза, который может быть удержан при размещении его нижним полушарием. Когда кран открывается и входит в полость, взвешенная нижняя полусфера падает.

Как начали исследовать атмосферное давление

Подобный эксперимент был проведен и описан немецким естествоиспытателем Отто Герике, мэром Магдебурга в 1654 году.

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Отто Герике (1602-1686) был немецким физиком, изучавшим атмосферное давление. С помощью «Магдебургской полусферы» он показал влияние атмосферного давления. Он также изучал электрические явления и объяснял природу трения. Он создал первый электрический двигатель.

Он остался в истории науки благодаря своей сезонной производительности (рис. 103).

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

В новейшем процессе используется ряд устройств, основанных на действии атмосферного давления. Для расчета результатов необходимо знать значение атмосферного давления.

Метод измерения атмосферного давления был впервые предложен итальянским ученым Эванджелистой Тричелли.

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Эванджелиста Тричелли (1608-1647) был итальянским ученым. Он первым измерил атмосферное давление с помощью сконструированного им ртутного барометра. Он доказал, что высота ртутного столба барометра приблизительно равна высоте барометра.

Он обнаружил, что если закрытую с одной стороны трубку полностью заполнить ртутью, а затем перевернуть и опустить в сосуд с ртутью, то исчезнет только часть этой ртути (рис. 104). Высота ртутного столба в этом эксперименте составляла приблизительно 760 мм. Результаты эксперимента позволили сделать вывод, что давление столба ртути уравновешивается атмосферным давлением, действующим на свободную поверхность ртути в контейнере. Атмосферное давление при таких условиях называется нормальным. С тех пор в науку была введена единица измерения атмосферного давления. Это миллиметр ртути (MMHG).

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Как рассчитать атмосферное давление

Выразим значение 760 мм (нормальное) для столба ртути в единице измерения давления Паскаль. Из предыдущего параграфа мы знаем, что давление жидкости рассчитывается по ее типу.

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Учитывая плотность ртути, получаем

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

При копировании материалов с сайта Evkova.org, пожалуйста, посетите www.evkova.orgへのアクティブなリンクを作成する必要があります.

Сайт создан группой преподавателей на некоммерческой основе для дополнительных молодых людей.

Сайт написан, поддерживается и управляется группой учителей

Telegram и логотип Telegram являются торговыми марками Telegram Corporation FZ-LLC.

Сайт предназначен для информационных целей и ни в коем случае не является публичным тендером, как это определено в статье 437 Гражданского кодекса Российской Федерации. Анна Евкова не оказывает услуг.

Летом зоны низкого атмосферного давления восстанавливаются в более теплых широтах Северного полушария. Над Азией формируется огромная область низкого атмосферного давления, ориентированная на тропики, — азиатский минимум.

Норма атмосферного давления

Воздействие атмосферы считается нормальным, если атмосферное давление находится на уровне моря на широте 45°. Отображение температуры — 0 градусов Цельсия. В 1644 году, благодаря Эванджелисте Торренчели и Винченцо Вивиани, это значение составило 760 мм. Стоит отметить, что эти первооткрыватели были учениками самого Галилео Галилея. Люди чувствуют себя более комфортно при стандартных значениях 750-760 мм рт. ст. Однако эти измерения не всегда абсолютно точны во всех областях в течение года.

Рисунок 2.Атмосферное давление в России в июле

Повышение и понижение давления

Когда барометрическое давление превышает стандартное значение 760 мм рт. ст., воздействие атмосферы увеличивается. В противоположном случае она уменьшается. В течение 24-часового периода между утром и вечером показатели давления значительно возрастают. Низкое давление наблюдается во второй половине дня и после полуночи. Эти изменения связаны с тем, что происходят изменения температуры и движения воздуха. На Земле существует три зоны преимущественно низкого давления и четыре зоны преимущественно высокого давления. Зоны атмосферного давления образуются на планете потому, что тепло от солнца и вращение Земли неравномерны. Солнце не так сильно нагревает земное полушарие в течение года. Отопление зависит от времени года.

Важно: Эксперты зафиксировали падение атмосферного давления в Москве на 727 мм рт. ст. В 2015 году аномальное артериальное давление в Москве составляло 778 мм рт. ст. Кроме того, Москва расположена на границе протяженного циклона, центральная часть которого находится над Латвией.

Влияние на человека. Антициклон

Антициклон определяется как повышение атмосферного давления. В эти периоды мало ветра, погода солнечная и нет резких перепадов температуры. Уровень влажности остается нормальным. Высокое атмосферное давление оказывает негативное влияние на здоровье человека. В частности, на людей с аллергией, астмой и высоким кровяным давлением негативно влияют изменения артериального давления. В периоды высокого давления люди испытывают головные боли и дискомфорт. Считается, что такие периоды приводят к снижению производительности и страданиям. В зависимости от высоты высокого давления, оно может эффективно или неэффективно защищать организм от болезней.

Важно: Чтобы легче переносить высокое давление, эксперты рекомендуют есть больше фруктов, включая калий, заниматься легкими физическими упражнениями и чередовать горячий и холодный душ. Чтобы улучшить работу иммунной и нервной систем, необходимо на время забыть о серьезных проблемах, которые могут поставить под угрозу ваше здоровье. Людям, страдающим от негативных симптомов, в последнее время требуется больше времени на отдых, чтобы восстановиться.

Давление воздуха в одной и той же точке земной поверхности не остается постоянным, а изменяется в зависимости от различных процессов, происходящих в атмосфере. В качестве «нормального» атмосферного давления условно считается давление 760 мм рт. ст. т. е. одна (естественная) атмосфера (§ 154).

Как атмосферное давление влияет на осадки?

Распределение осадков на планете совсем не равномерно. В одних местах влаги слишком много, в других — слишком мало. Эта неравномерность обусловлена зонированием атмосферного давления, описанным ранее. В зонах низкого давления воздух постоянно нагревается и содержит много влаги. Когда влага поднимается вверх, она образует облака и выпадает в виде дождя. Именно поэтому экваториальные зоны и другие регионы низкого давления не лишены влаги.

В зонах высокого давления холодный воздух, содержащий мало или совсем не содержащий влаги, опускается на поверхность почвы. Нагревание и уплотнение образовавшихся газовых масс выводит их из точки насыщения. Именно поэтому в тропиках и полярных регионах выпадает очень мало осадков.

Опубликовано:

21 октября 2022, 16:15

Стрелка барометра показывает 760 мм рт. ст. Надписи сделаны на английском языке
Показания атмосферного давления на барометре: Pixabay

В прогнозе погоды синоптики обязательно указывают показатели атмосферного давления. Этот показатель напрямую связан с другими природными явлениями, от него зависит самочувствие человека. Как определяют атмосферное давление и зачем это надо, знают эксперты по метеорологии Крис Касперски, Рина Заславская, Эльвира Щербань, Михаил Тейлблюм, Светлана Логвиненко.

Что такое атмосферное давление и на что оно влияет

Что такое атмосферное давление? Атмосферное давление — сила, с которой атмосфера давит на земную поверхность и все находящиеся на ней предметы. Это очень изменчивый метеоэлемент, показатели которого зависят от многих факторов и явлений.

В чем особенности атмосферного давления

Изменение атмосферного давления — причина появления ветра, когда воздух горизонтально движется над землей из области высокого давления в область низкого. В атмосфере формируются циклоны и антициклоны, которые приносят в регионы дождь, снег, туман и другие погодные явления.

Существует прямая связь между атмосферным давлением и погодой. Если давление падает, ожидается пасмурная, дождливая погода, если повышается — погода будет сухой. Автор «Энциклопедии примет погоды» Крис Касперски пишет, что низкое атмосферное давление само по себе еще не признак ненастья. Главным признаком ухудшения погоды станет быстрое падение столбика барометра до 740 –730 мм рт. ст.

Издание «Метеовести» привело экстремальные показатели атмосферного давления, отмеченные на Земле:

  • самое высокое давление, равное 1083,2 гПа(мбара) или 812,4 мм. рт. ст., зарегистрировано на севере Западной Сибири 31 декабря 1968 года во время антициклона;
  • самое низкое давление отмечено во время урагана 2 сентября 1935 года во Флориде-Кис (США) – 892,3 гПа (мб) или 669,3 мм. рт. ст.

Метеорологи для составления точных прогнозов погоды особое внимание уделяют совершенствованию методов измерения давления атмосферы на метеостанциях. Точные показатели помогают предотвратить разрушительное влияние стихийных бедствий, делают повседневную жизнь человека более комфортной.

Спокойное открытое море и белые тучи над ним

Тихая погода на море: Unsplash/Аstrid

Как атмосферное давление влияет на самочувствие человека? Люди, у которых наблюдаются проблемы со здоровьем, становятся метеозависимыми и реагируют на резкие скачки атмосферного давления. У них болит голова, учащается пульс, появляются другие неприятные симптомы.

В научном журнале «Успехи современного естествознания» авторы пишут, что низкое давление может вызвать у человека высотную болезнь, при которой уровень углекислого газа в крови катастрофически повышается и наступает кислородное голодание. Сосуды реагируют спазмом, повышая давление в большом круге кровообращения человека. Высокое атмосферное давление в целом не опасно, а процессы сводятся к накоплению газов воздуха в крови и тканях человека.

Повлиять на погодные катаклизмы, связанные с перепадами атмосферного давления, человек не может. Но в такой ситуации нужно помочь организму пережить стресс. Авторы статьи «Фармакологическая защита элтацином…» пишут, что медикаментозная терапия помогает снизить негативное воздействие перепадов АД у метеозависимых людей.

Мужчина в синей спортивной кофте сидит на корточках на причале, ухватившись рукой за голову. В праовй руке он держит солнцезащитные очки

Мужчина приложил руку к голове: Unsplash/Bruno Aguirre

Как определяют атмосферное давление и как оно изменяется

Каким прибором определяют атмосферное давление? Для определения давления атмосферы используют барометр (с древнегреческого – ‘измеритель тяжести’). Онлайн-энциклопедия объясняет, что ртутный измеритель давления был изобретен в 1644 году итальянским физиком Эванджелиста Торричелли. В быту ртутный прибор заменил барометр-анероид.

Для измерения атмосферного давления применяют такие приборы:

  • механические и электронные барометры-анероиды;
  • газовые барометры;
  • термогигрометры;
  • барографы.

Что такое нормальное атмосферное давление? Нормальным считается давление, равное весу ртутного столба высотой 760 мм, находящегося при температуре 0.0 °C на широте 45° и на уровне моря. Есть и другие единицы измерения, эквивалентные 760 мм рт. ст.:

  • в системе СГС — 1,01325 бар (1013,25 мбар);
  • в Международной системе единиц (СИ) — 101 325 Па;
  • атмосфера (Атм (atm)) — 1;
  • фунт-сила на квадратный дюйм (psi) — 14,7;
  • дюйм ртутного столба (дюйм рт. ст. (inHg)) — 29,9 дюйм.

Барометр с круглым блестящим корпусом висит вертикально. Стрелки показывают уровень давления на шкале

Барометр-анероид: Unsplash/iSawRed

Факторы, от которых зависит колебание атмосферного давления:

  • Высота над уровнем моря. Нижний слой воздуха над поверхностью Земли сжат намного больше, чем вышележащие слои. Чем выше над поверхностью Земли, тем меньше плотность воздуха и тем меньшее давление он производит. С подъемом вверх воздух становится все более разреженным, и атмосферное давление понижается (в тропосфере в среднем 1 мм на каждые 10,5 м подъема).
  • Температура воздуха. В течение суток меняются температурные показатели, которые влияют на суточный ход атмосферного давления. Ночью оно повышается, а днем при высоких температурах снижается. Самые правильные суточные показатели наблюдаются в тропическом поясе, где дневное колебание достигает 2,4 мм рт. ст., а ночное — 1,6 мм рт. ст.
  • Широта. С увеличением широты амплитуда изменения атмосферного давления уменьшается, но становятся более резкими непериодические изменения атмосферного давления.

На Земле атмосферное давление распределяется полосами. Выделяют пояса низкого и высокого давления, которые связаны с нагревом и перемещением воздушных масс. Над экватором воздух хорошо прогревается и там образуется пояс низкого давления. Над полюсами держится низкая температура и там формируется пояс высокого атмосферного давления. В широтах, где встречаются холодные и теплые потоки воздуха, образуются свои атмосферные пояса.

Атмосферное давление влияет на процессы, происходящие на Земле. Чтобы не стать метеозависимым, человек постоянно занимается изучением этой важнейшей характеристики состояния атмосферы. Сегодня существует множество способов и приемов измерения атмосферного давления для составления точных прогнозов погоды и предупреждения человека о предстоящих перепадах давления.

Оригинал статьи: https://www.nur.kz/family/school/1817671-kak-atmosfernoe-davlenie-vliaet-na-samocuvstvie/

Понравилась статья? Поделить с друзьями:

Читайте также:

  • Как можно изменить аккорд g
  • Как можно изменить аккаунт на телефоне
  • Как можно изменить айпи
  • Как можно изменить айклауд на айфоне
  • Как можно изменить адрес электронной почты gmail

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии